今日分享:
Global Monthly Satellite-derived PM2.5今天来分享下全球年度月度卫星监测的PM2.5数据 :
该数据集提供了 2000 年至 2022年地面细颗粒物 (PM2.5) 的年度和月度估算值。数据由 NASA 多种仪器(MODIS、MISR、SeaWIFS 和 VIIRS)的气溶胶光学厚度 (AOD) 反演数据与 GEOS-Chem 化学传输模型整合而成。初始 PM2.5 估算值随后使用残差卷积神经网络 (CNN) 根据全球地面观测数据进行校准。
- 时间跨度:2000-2019 年(V6.GL.01),延长至 2022 年(V6.GL.02)
- AOD 数据源:MODIS、MISR、SeaWIFS 和 VIIRS
- 校准:使用全球地面观测的 GEOS-Chem 模型和残差 CNN
V6.GL.02 中的更新:
- 更新整个时间序列的地面观测数据
- 纳入 SNPP VIIRS 检索
- 时间覆盖范围延长至 2022 年
年度和月度数据集以 NetCDF (.nc) 格式提供,并包含使用 WGS84 投影的网格文件。这些估算值主要用于辅助大规模研究。年度和粗分辨率平均值对应于网格内数值的简单平均值。提供网格数据集是为了方便用户根据自身需求聚合数据。高分辨率(0.01° × 0.01°)数据集以所纳入信息源的最精细分辨率进行网格化,但由于受较粗分辨率信息源的影响,不太可能在网格分辨率下完全解析 PM2.5 梯度。
单位:ug/m3
数据来源:
https://sites.wustl.edu/acag/datasets/surface-pm2-5/#V6.GL.02
文献引用:
Enhancing Global Estimation of Fine Particulate Matter Concentrations by Including Geophysical a Priori Information in Deep LearningDOI:https://pubs.acs.org/doi/10.1021/acsestair.3c00054
在GEE上可以下载,上传的数据可以这里查看:
var pm25_monthly = ee.ImageCollection("projects/sat-io/open-datasets/GLOBAL-SATELLITE-PM25/MONTHLY"), pm25_yearly = ee.ImageCollection("projects/sat-io/open-datasets/GLOBAL-SATELLITE-PM25/ANNUAL");
接下来就是下载数据
以东北三省为研究区,设置按年下载和按月下载
01
—
GEE数据下载代码
按年度下载:
Map.centerObject(roi,4)//boundaryvar styling = {color:"red",fillColor:"00000000"};Map.addLayer(roi.style(styling),{},"geometry")for(var i = 2000;i<=2022;i++){var pm25_yearly = ee.ImageCollection("projects/sat-io/open-datasets/GLOBAL-SATELLITE-PM25/ANNUAL").filterBounds(roi).map(scale).filterDate(i+'-01-01', i+'-12-31')
var pm25 = pm25_yearly.mean().clip(roi)var vis = {bands: ['b1'],min: 0.5, max: 5,palette: ['#a50026','#d73027','#f46d43','#fdae61','#fee090','#ffffbf','#e0f3f8','#abd9e9','#74add1','#4575b4','#313695'].reverse()}
print(pm25)Map.addLayer(pm25, vis, i+'pm25');// 可视化参数。
Export.image.toDrive({ image: pm25, description: i+'pm25', region: roi, scale: 500, maxPixels: 1e13, folder: 'pm25' })
}
按月度下载:
var pm25_monthly = ee.ImageCollection("projects/sat-io/open-datasets/GLOBAL-SATELLITE-PM25/MONTHLY") //按月合成var startYear = 2020;var endYear = 2022;
var years = ee.List.sequence(startYear,endYear);var months = ee.List.sequence(1,12);var monthlySRImg = ee.ImageCollection.fromImages( years.map(function (y) { return months.map(function(m) { var monthly = pm25_monthly .filter(ee.Filter.calendarRange(y, y, "year")) .filter(ee.Filter.calendarRange(m, m, "month")) .mean(); return monthly .set("year", y) .set("month", m) .set('date', ee.Date.fromYMD(y,m,1)) .set("system:time_start", ee.Date.fromYMD(y, m, 1));}); }) .flatten());print('monthlySRImg',monthlySRImg)
///*----------------------数据批量输出函数-----------------------// function exportImageCollection(imgCol, scale, roi, taskName, fileName) { var indexList = imgCol.reduceColumns(ee.Reducer.toList(), ["system:index"]).get("list"); indexList.evaluate(function (indexs) {
for (var i = 0; i < indexs.length; i++) { var image = imgCol.filter(ee.Filter.eq("system:index", indexs[i])).first(); image = image.toFloat(); // Export.image.toDrive({ image: image, description: taskName + "_" + indexs[i], fileNamePrefix: fileName + "_" + indexs[i],//导出影像名称 region: roi,//研究区 folder: 'PM25',//选择导出云盘的文件夹名称 scale: scale,//空间分辨率 crs: "EPSG:4326",//坐标系 maxPixels: 1e13//最大像元个数 }); } });
}
exportImageCollection(monthlySRImg, 500, roi, 'monthlPM25', "PM25");
在此代码中,我只下载了东北地区2000到2022年逐年逐月的PM2.5估算值,下载其他地区的数据换研究区和日期即可
02
—
结果显示
2000 | 2004 |
2009 | 2014 |
2019 | 2022 |
按月导出至云盘
按年导出至云盘
代码完整链接请在微信公众号后台私信
Global Monthly Satellite-derived PM2.5
感谢关注,欢迎转发!
声明:仅供学习使用!
希望关注的朋友们转发,如果对你有帮助的话记得给小编点个赞或者在看!