蒙特卡洛与围棋

今天看到头条上有位网友提出了一个蒙特卡洛和围棋的问题,以为大佬的回答我觉得很有意思,特摘抄与此。

蒙特卡洛算法是20世纪十大最伟大的算法,阿法狗就采用了蒙特卡洛算法。蒙特卡洛树不是一种算法,蒙特卡洛才是一种算法。
先来个动态图感受下蒙特卡洛树:

在五子棋中,因为每一步的选择点并不多,以当前电脑的计算力可以用穷举找到最佳下法。

“围棋共有361个点,按照沈括的估计方法,每个点有三种状态:黑、白、空。因此围棋的状
态空间复杂度是3^36110^172=10000^43。根据围棋规则,没有气的子不能存活在棋盘
上,因此以上数字包括了不合法状态。通过蒙特卡洛方法,我们可以计算合法状态的比
率为0.012,因此围棋的状态空间复杂度为2x10^170.”这个数字可能有些抽象,但下面
的对比能让我们形象地了解计算机围棋的复杂程度。
“相比较而言,围棋的状态空间复杂度是10^48.换句话说,围棋比象棋复杂10^122倍。这
是个什么概念呢?围棋相比于整个太阳系相对于单个原子核更庞大、跟复杂。”

显然,以当前电脑的计算力,无法对围棋进行暴力穷举。
那么,蒙特卡洛算法有什么神奇之处呢?

一、为什么叫蒙特卡洛(蒙特.卡洛)

20世纪40年代美国“曼哈顿计划”的成员S.M.乌拉姆和J.冯·诺伊曼首先提出的,用驰名世界的赌城—摩纳哥的Monte Carlo命名。

二、原理

本质是一种统计方法,即用大量的随机样本,以出现概率当作问题的解。
比如计算圆周率π:

显然上图1/4圆与正方形的面积比为:

πr2(2r)2=π4 π r 2 ( 2 r ) 2 = π 4

那么,如果在正方形内随机产生n个点,通过计算这些点和原点的距离,判断这些点是否在1/4圆内。
在1/4圆内的点数/n = π/4 。即点落在1/4圆内的概率*4 = π。

随机模拟30000个点,$ \pi$的估算值与真实值相差0.07%.

原来概率与统计可以这么用。
推而广之,可以计算任意一个积分的值。

关于蒙特卡洛还有许多神奇的应用,请移步

《A Business Planning Example》

《蒙特卡罗(Monte Carlo)模拟的一个应用实例》

《微观不可预测的交通的蒙特卡罗模拟》

《基于蒙特卡罗数值模拟的大跨桥梁状态评估》

回到问题上,阿法狗是怎么选择下一步的呢?

简单的说

  1. 根据一定的策略选出可能的下法
  2. 然后进行蒙特卡罗模拟计算胜率

以上2步反复进行,显然,模拟的次数越多,越有可能得到最优解。

这也就是为什么同样的zen7软件,电脑越快、计算时间越久,下法越厉害。

### 解决PyCharm无法加载Conda虚拟环境的方法 #### 配置设置 为了使 PyCharm 能够成功识别并使用 Conda 创建的虚拟环境,需确保 Anaconda 的路径已正确添加至系统的环境变量中[^1]。这一步骤至关重要,因为只有当 Python 解释器及其关联工具被加入 PATH 后,IDE 才能顺利找到它们。 对于 Windows 用户而言,在安装 Anaconda 时,默认情况下会询问是否将它添加到系统路径里;如果当时选择了否,则现在应该手动完成此操作。具体做法是在“高级系统设置”的“环境变量”选项内编辑 `Path` 变量,追加 Anaconda 安装目录下的 Scripts 文件夹位置。 另外,建议每次新建项目前都通过命令行先激活目标 conda env: ```bash conda activate myenvname ``` 接着再启动 IDE 进入工作区,这样有助于减少兼容性方面的问题发生概率。 #### 常见错误及修复方法 ##### 错误一:未发现任何解释器 症状表现为打开 PyCharm 新建工程向导页面找不到由 Conda 构建出来的 interpreter 列表项。此时应前往 Preferences/Settings -> Project:...->Python Interpreter 下方点击齿轮图标选择 Add...按钮来指定自定义的位置。按照提示浏览定位到对应版本 python.exe 的绝对地址即可解决问题。 ##### 错误二:权限不足导致 DLL 加载失败 有时即使指定了正确的解释器路径,仍可能遇到由于缺乏适当的操作系统级许可而引发的功能缺失现象。特别是涉及到调用某些特定类型的动态链接库 (Dynamic Link Library, .dll) 时尤为明显。因此拥有管理员身份执行相关动作显得尤为重要——无论是从终端还是图形界面触发创建新 venv 流程均如此处理能够有效规避此类隐患。 ##### 错误三:网络连接异常引起依赖下载超时 部分开发者反馈过因网速慢或者其他因素造成 pip install 操作中途断开进而影响整个项目的初始化进度条卡住的情况。对此可尝试调整镜像源加速获取速度或是离线模式预先准备好所需资源包后再继续后续步骤。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值