奇异值分解(SVD)原理与在降维中的应用

今天看了一篇介绍奇异值分解的详解博客,介绍的非常好特此转载。
奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域。是很多机器学习算法的基石。本文就对SVD的原理做一个总结,并讨论在在PCA降维算法中是如何运用运用SVD的。

1. 回顾特征值和特征向量

我们首先回顾下特征值和特征向量的定义如下:

Ax=λx A x = λ x

  其中A是一个 n×n n × n 的矩阵,x是一个n维向量,则我们说λ是矩阵A的一个特征值,而x是矩阵A的特征值λ所对应的特征向量。
  求出特征值和特征向量有什么好处呢? 就是我们可以将矩阵A特征分解。如果我们求出了矩阵A的n个特征值λ1≤λ2≤…≤λn,以及这n个特征值所对应的特征向量{w1,w2,…wn},那么矩阵A就可以用下式的特征分解表示:

A=WΣW1 A = W Σ W − 1

  其中W是这n个特征向量所张成的n×n维矩阵,而Σ为这n个特征值为主对角线的n×n维矩阵。一般我们会把W的这n
个特征向量标准化,即满足||wi||2=1,或者说 wTiwi=1 w i T w i = 1 ,此时W的n个特征向量为标准正交基,满足 WTW=I W T W = I ,即 WT=W1 W T = W − 1 , 也就是说W为酉矩阵。
  这样我们的特征分解表达式可以写成

A=WΣWT A = W Σ W T

    注意到要进行特征分解,矩阵A必须为方阵。那么如果A不是方阵,即行和列不相同时,我们还可以对矩阵进行分解吗?答案是可以,此时我们的SVD登场了。

2. SVD的定义

SVD也是对矩阵进行分解,但是和特征分解不同,SVD并不要求要分解的矩阵为方阵。假设我们的矩阵A是一个m×n的矩阵,那么我们定义矩阵A的SVD为:

A=UΣVT A = U Σ V T

  其中U是一个 m×m m × m 的矩阵,Σ是一个m×n的矩阵,除了主对角线上的元素以外全为0,主对角线上的每个元素都称为奇异值,V是一个 n×n n × n 的矩阵。U和V都是酉矩阵,即满足 UTU=I,VTV=I U T U = I , V T V = I 。下图可以很形象的看出上面SVD的定义:

那么我们如何求出SVD分解后的 U,Σ,V U , Σ , V 这三个矩阵呢?
  如果我们将A的转置和A做矩阵乘法,那么会得到n×n
的一个方阵ATA。既然ATA是方阵,那么我们就可以进行特征分解,得到的特征值和特征向量满足下式:

(ATA)vi=λivi ( A T A ) v i = λ i v i
这样我们就可以得到矩阵 ATA A T A 的n个特征值和对应的n个特征向量v了。将 ATA A T A 的所有特征向量张成一个n×n
的矩阵V,就是我们SVD公式里面的V矩阵了。一般我们将V中的每个特征向量叫做A的右奇异向量。
  如果我们将A和A的转置做矩阵乘法,那么会得到m×m的一个方阵 AAT A A T 。既然AAT是方阵,那么我们就可以进行特征分解,得到的特征值和特征向量满足下式:
(AAT)ui=λiui ( A A T ) u i = λ i u i
这样我们就可以得到矩阵 AAT A A T 的m个特征值和对应的m个特征向量u了。将AAT的所有特征向量张成一个m×m的矩阵U,就是我们SVD公式里面的U矩阵了。一般我们将U中的每个特征向量叫做A的左奇异向量。

  U和V我们都求出来了,现在就剩下奇异值矩阵Σ没有求出了。由于Σ除了对角线上是奇异值其他位置都是0,那我们只需要求出每个奇异值σ就可以了。
  我们注意到:

A=UΣVTAV=UΣVTVAV=UΣAvi=σiuiσi=Avi/ui A = U Σ V T ⇒ A V = U Σ V T V ⇒ A V = U Σ ⇒ A v i = σ i u i ⇒ σ i = A v i / u i

  这样我们可以求出我们的每个奇异值,进而求出奇异值矩阵Σ。
  上面还有一个问题没有讲,就是我们说ATA的特征向量组成的就是我们SVD中的V矩阵,而AAT的特征向量组成的就是我们SVD中的U矩阵,这有什么根据吗?这个其实很容易证明,我们以V矩阵的证明为例。

A=UΣVTAT=VΣTUTATA=VΣTUTUΣVT=VΣ2VT A = U Σ V T ⇒ A T = V Σ T U T ⇒ A T A = V Σ T U T U Σ V T = V Σ 2 V T

  上式证明使用了: UTU=I,ΣTΣ=Σ2 U T U = I , Σ T Σ = Σ 2
可以看出ATA的特征向量组成的的确就是我们SVD中的V矩阵。类似的方法可以得到 AAT A A T 的特征向量组成的就是我们SVD中的U矩阵。

  进一步我们还可以看出我们的特征值矩阵等于奇异值矩阵的平方,也就是说特征值和奇异值满足如下关系:

σi=λi σ i = λ i

  这样也就是说,我们可以不用 σi=Avi/ui σ i = A v i / u i 来计算奇异值,也可以通过求出 ATA A T A 的特征值取平方根来求奇异值。

3.SVD计算举例

  这里我们用一个简单的例子来说明矩阵是如何进行奇异值分解的。我们的矩阵A定义为:

A=011110 A = ( 0 1 1 1 1 0 )

  我们首先求出 ATA A T A AAT A A T :

ATA=(011110)011110=(2112) A T A = ( 0 1 1 1 1 0 ) ( 0 1 1 1 1 0 ) = ( 2 1 1 2 )
AAT=011110(011110)=110121011 A A T = ( 0 1 1 1 1 0 ) ( 0 1 1 1 1 0 ) = ( 1 1 0 1 2 1 0 1 1 )

  进而求出 ATA A T A 的特征值和特征向量:
  
λ1=3;v1=(1/21/2);λ2=1;v2=(1/21/2) λ 1 = 3 ; v 1 = ( 1 / 2 1 / 2 ) ; λ 2 = 1 ; v 2 = ( − 1 / 2 1 / 2 )

  接着求 AAT A A T 的特征值和特征向量:
  

λ1=3;u1=1/62/61/6;λ2=1;u2=1/201/2;λ3=0;u3=1/31/31/3 λ 1 = 3 ; u 1 = ( 1 / 6 2 / 6 1 / 6 ) ; λ 2 = 1 ; u 2 = ( 1 / 2 0 − 1 / 2 ) ; λ 3 = 0 ; u 3 = ( 1 / 3 − 1 / 3 1 / 3 )

  利用 Avi=σiui,i=1,2 A v i = σ i u i , i = 1 , 2 求奇异值:
  
011110(1/21/2)=σ11/62/61/6σ1=3 ( 0 1 1 1 1 0 ) ( 1 / 2 1 / 2 ) = σ 1 ( 1 / 6 2 / 6 1 / 6 ) ⇒ σ 1 = 3

011110(1/21/2)=σ21/201/2σ2=1 ( 0 1 1 1 1 0 ) ( − 1 / 2 1 / 2 ) = σ 2 ( 1 / 2 0 − 1 / 2 ) ⇒ σ 2 = 1

当然,我们也可以用 σi=λi σ i = λ i 直接求出奇异值为 3 3 和1.
最终得到A的奇异值分解为:
A=UΣVT=1/62/61/61/201/21/31/31/3300010(1/21/21/21/2) A = U Σ V T = ( 1 / 6 1 / 2 1 / 3 2 / 6 0 − 1 / 3 1 / 6 − 1 / 2 1 / 3 ) ( 3 0 0 1 0 0 ) ( 1 / 2 1 / 2 − 1 / 2 1 / 2 )

4. SVD的一些性质

上面几节我们对SVD的定义和计算做了详细的描述,似乎看不出我们费这么大的力气做SVD有什么好处。那么SVD有什么重要的性质值得我们注意呢?
  对于奇异值,它跟我们特征分解中的特征值类似,在奇异值矩阵中也是按照从大到小排列,而且奇异值的减少特别的快,在很多情况下,前10%甚至1%的奇异值的和就占了全部的奇异值之和的99%以上的比例。也就是说,我们也可以用最大的k个的奇异值和对应的左右奇异向量来近似描述矩阵。也就是说:

Am×n=Um×mΣm×nVTn×nUm×kΣk×kVTk×n A m × n = U m × m Σ m × n V n × n T ≈ U m × k Σ k × k V k × n T
其中k要比n小很多,也就是一个大的矩阵A可以用三个小的矩阵 Um×k U m × k , Σk×k Σ k × k , VTk×n V k × n T 来表示。如下图所示,现在我们的矩阵A只需要灰色的部分的三个小矩阵就可以近似描述了。
  
  由于这个重要的性质,SVD可以用于PCA降维,来做数据压缩和去噪。也可以用于推荐算法,将用户和喜好对应的矩阵做特征分解,进而得到隐含的用户需求来做推荐。同时也可以用于NLP中的算法,比如潜在语义索引(LSI)。下面我们就对SVD用于PCA降维做一个介绍。

5. SVD用于PCA

在主成分分析(PCA)原理总结中,我们讲到要用PCA降维,需要找到样本协方差矩阵 XTX X T X 的最大的d个特征向量,然后用这最大的d个特征向量张成的矩阵来做低维投影降维。可以看出,在这个过程中需要先求出协方差矩阵 XTX X T X ,当样本数多样本特征数也多的时候,这个计算量是很大的。
  注意到我们的SVD也可以得到协方差矩阵 XTX X T X 最大的d个特征向量张成的矩阵,但是SVD有个好处,有一些SVD的实现算法可以不求先求出协方差矩阵 XTX X T X ,也能求出我们的右奇异矩阵V。也就是说,我们的PCA算法可以不用做特征分解,而是做SVD来完成。这个方法在样本量很大的时候很有效。实际上,scikit-learn的PCA算法的背后真正的实现就是用的SVD,而不是我们我们认为的暴力特征分解。
  另一方面,注意到PCA仅仅使用了我们SVD的右奇异矩阵,没有使用左奇异矩阵,那么左奇异矩阵有什么用呢?
  假设我们的样本是m×n的矩阵X,如果我们通过SVD找到了矩阵 XXT X X T 最大的d个特征向量张成的m×d维矩阵U,则我们如果进行如下处理:

Xd×n=UTd×mXm×n X d × n ′ = U d × m T X m × n

  可以得到一个d×n的矩阵 X X ′ ,这个矩阵和我们原来的m×n维样本矩阵X相比,行数从m减到了k,可见对行数进行了压缩。也就是说,左奇异矩阵可以用于行数的压缩。相对的,右奇异矩阵可以用于列数即特征维度的压缩,也就是我们的PCA降维。 

6. SVD小结

SVD作为一个很基本的算法,在很多机器学习算法中都有它的身影,特别是在现在的大数据时代,由于SVD可以实现并行化,因此更是大展身手。SVD的原理不难,只要有基本的线性代数知识就可以理解,实现也很简单因此值得仔细的研究。当然,SVD的缺点是分解出的矩阵解释性往往不强,有点黑盒子的味道,不过这不影响它的使用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值