TensorFlow线性回归与逻辑回归实战

TensorFlow线性回归与逻辑回归实战

议程

  • Review

  • Linear regression on birth/life data

  • Control Flow

  • tf.data

  • Optimizers, gradients

  • Logistic regression on MNIST

  • Loss functions



一、TensorFlow线性回归


回顾

计算图

TensorFlow将计算的定义与其执行分开

阶段1:组装图表

阶段2:使用会话在图中执行操作。

TensorBoard

import tensorflow as tf
x = 2
y = 3
add_op = tf.add(x, y)
mul_op = tf.multiply(x, y)
useless = tf.multiply(x, add_op)
pow_op = tf.pow(add_op, mul_op)
writer=tf.summary.FileWriter('./graphs',tf.get_default_graph())
with tf.Session() as sess:
    z = sess.run(pow_op)

tf.constant and tf.Variable

常量值存储在图形定义中

会话分配内存来存储变量值

tf.placeholder and feed_dict

使用字典(feed_dict)将值提供给占位符

易于使用但性能不佳

避免懒加载

  • 分离图形的组合和执行操作

  • 使用Python属性确保函数仅在第一次调用时加载

在TensorFlow中的线性回归

数据与模型概要

建模之间的线性关系:

  • 因变量Y.

  • 解释变量X.

世界发展指标数据集

  • X: 出生率

  • Y: 预期寿命

190 国家

想要:找到X和Y之间的线性关系,从X预测Y.

模型:参考: Y_predicted = w * X + b

均方误差: E[(y - y_predicted)2]

所需数据与代码:

data/birth_life_2010.txt
examples/03_linreg_starter.py

阶段1:组装我们的图表

第一步:读数据
import os 
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
import numpy as np
%matplotlib inline
import pandas as pd
第一种方式读取(官方)
def read_data(filename):
    '''
    读取birth_life_2010.txt 数据
    data:返回numpy数组数据
    n_samples:例子的数量
    '''
    # 去掉head
    text = open(filename, 'r').readlines()[1:]
    # 去掉每一行末尾的换行符\n,并以制表符\t进行分隔
    data = [line[:-1].split('\t') for line in text]
    # 提取出生率
    births = [float(line[1]) for line in data]
    # 提取预期寿命
    lifes = [float(line[2]) for line in data]
    # 变成[(),()]数据
    data = list(zip(births, lifes))
    # 统计数据量
    n_samples = len(data)
    # 数据转换为numpy的ndarray类型
    data = np.asarray(data, dtype=np.float32)
    return data, n_samples
data,n_samples=read_data('birth_life_2010.txt')
data

输出:

array([[ 1.822   , 74.82825 ],
       [ 3.869   , 70.81949 ],
       ...
       [ 5.287   , 55.585587],
       [ 5.443   , 50.65366 ]], dtype=float32)
n_samples

输出:

190
第二种方式读取
# 第二种方式读取
def read_data(file_name):
    data = pd.read_table('birth_life_2010.txt')
    births = data['Birth rate']
    lifes = data['Life expectancy']
    data = list(zip(births,lifes))
    n_samples = len(data)
    data = np.asarray(data, dtype=np.float32)
    return data,n_samples
data,n_samples=read_data('birth_life_2010.txt')
data,n_samples

输出:

(array([[ 1.822   , 74.82825 ],
        [ 3.869   , 70.81949 ],
        ...
        [ 5.287   , 55.585587],
        [ 5.443   , 50.65366 ]], dtype=float32), 190)
第2步:为输入和标签创建占位符
# tf.placeholder(dtype, shape=None, name=None)
X,Y=None,None
X = tf.placeholder(dtype=tf.float32)
Y = tf.placeholder(dtype=tf.float32)
第3步:创建权重和偏置
# tf.get_variable(name,shape=None,dtype=None,initializer=None,)
# w,b,X,Y都是标量,shape=()可设置为shape=[]
w,b = None,None
w = tf.get_variable(name='weght',shape=(),initializer=tf.zeros_initializer())
b = tf.get_variable(name='bias',shape=(),initializer=tf.zeros_initializer())
第4步:预测
Y_predicted = None
Y_predicted = w * X + b
第5步:指定损失函数
loss = None
loss = tf.square(Y - Y_predicted, name='loss')
第6步:创建优化器
opt = tf.train.GradientDescentOptimizer(learning_rate=0.001)
optimizer = opt.minimize(loss)
import time
start = time.time()

阶段2:训练我们的模型

第7步:初始化及TensorBoard
with tf.Session() as sess:
    # 初始化变量
    sess.run(tf.global_variables_initializer())
    # tensorboard
    writer = tf.summary.FileWriter('./graphs/linear_reg',sess.graph)
    ...
第8步:训练模型100个epochs
with tf.Session() as sess:
    # 初始化变量
    sess.run(tf.global_variables_initializer())
    # tensorboard
    writer = tf.summary.FileWriter('./graphs/linear_reg',sess.graph)
    # trian the model for 100 epoch
    for i in range(100):
        # 初始化每一次的loss
        total_loss=0
        # 每一次,一批批训练
        for x,y in data:
            # 需要运行优化函数optimizer与loss, Tensorflow 会自动更新weight 和bias 两个变量
            _,loss_ = sess.run([optimizer,loss],feed_dict={X:x,Y:y})
            total_loss += loss_
        print('Epoch {0}:{1}'.format(i,total_loss/n_samples))
    writer.close()

输出:

640?wx_fmt=png

Epoch 0:1661.8637834631543
Epoch 1:956.3224148609137
...
Epoch 98:30.0349335548615
Epoch 99:30.03552558278714
第9步:输出w和b的值
with tf.Session() as sess:
    # 初始化变量
    sess.run(tf.global_variables_initializer())
    # tensorboard
    writer = tf.summary.FileWriter('./graphs/linear_reg',sess.graph)
    # trian the model for 100 epoch
    for i in range(100):
        # 初始化每一次的loss
        total_loss=0
        # 每一次,一批批训练
        for x,y in data:
            # 需要运行优化函数optimizer与loss, Tensorflow 会自动更新weight 和bias 两个变量
            _,loss_ = sess.run([optimizer,loss],feed_dict={X:x,Y:y})
            total_loss += loss_
        print('Epoch {0}:{1}'.format(i,total_loss/n_samples))
    writer.close()
    # 第9步:输出w和b的值
    w_out,b_out = None,None
    w_out, b_out = sess.run([w, b])

输出:

Epoch 0:1661.8637834631543
Epoch 1:956.3224148609137
...
Epoch 98:30.0349335548615
Epoch 99:30.03552558278714
第10步:输出耗时
print('Took: %f seconds' %(time.time() - start))
print('last value of loss, w, b: {0}, {1}, {2}'.format(total_loss/n_samples, w_out, b_out))

输出:

Took: 25.186522 seconds
last value of loss, w, b: 30.03552558278714, -6.07021427154541, 84.92951202392578
第11步:可视化
import matplotlib.pyplot as plt
plt.plot(data[:,0], data[:,1], 'bo', label='Real data')
plt.plot(data[:,0], data[:,0] * w_out + b_out, 'r', label='Predicted data')
plt.legend()

输出

640?wx_fmt=png

Huber loss

Huber loss是为了增强平方误差损失函数(squared loss function)对噪声(或叫离群点,outliers)的鲁棒性提出的。

对异常值的鲁棒性,如果预测值和实际值之间的差异很小,则将其平方;如果它很大,取其绝对值。

定义:

640?wx_fmt=png

控制流程

在TensorFlow中,tf.cond()类似于c语言中的if…else…,用来控制数据流向,但是仅仅类似而已,其中差别还是挺大的。

格式:tf.cond(pred, fn1, fn2, name=None)

def huber_loss(label, prediction, delta=14.0):
    residual = tf.abs(label - prediction)
    def f1(): return 0.5*tf.square(residual)
    def f2(): return delta*residual-0.5*tf.square(delta)
    return tf.cond(residual < delta, f1,f2)
# cond函数分为true和false两种情况。在许多情况下,使用函数tf.case。

tf.data

在上面的代码我曾经使用过数据placeholder。但是占位符是一种古老的方式,关于这种方法有各种各样的意见。看来有利于的是,它是一个点,缺点在于它可以很容易地处理数据外的TF较慢处理应被视为一个单独的线程中的数据,和数据瓶颈。因此,这个问题得以解决tf.data。

如何使用tf.data?

tf.data.Dataset.from_tensor_slices((feature, labels))
tf.data.Dataset.from_generator(gen, output_types, output_shapes)

featurelabels必须是Tensor数据类型。但是,由于张量数据类型与numpy数据类型相同,因此可以包含numpy数据类型。

# 换句话说,如果您从上面的模型中读取数据为tf.data,您可以写:
data,n_samples=read_data('birth_life_2010.txt')
dataset = tf.data.Dataset.from_tensor_slices((data[:,0], data[:,1]))
dataset

输出:

<TensorSliceDataset shapes: ((), ()), types: (tf.float32, tf.float32)>
print(dataset.output_types) # >> (tf.float32, tf.float32)
print(dataset.output_shapes) # >> (TensorShape([]), TensorShape([]))
(tf.float32, tf.float32)
(TensorShape([]), TensorShape([]))

tf.data.Dataset有几种方法,你可以直接读取数据文件Tensorflow文件格式分析器。

tf.data.TextLineDataset(filenames) 将文件的每一行读作一个数据。它主要用于读取csv文件和机器翻译领域。

tf.data.FixedLengthRecordData(filenames)它主要用于固定长度数据。数据作为一个数据被接收预定长度。经常使用的地方也经常用于由固定长度组成的数据中。例如,它用于读取诸如CIFAR数据或ImageNet数据之类的内容。

tf.data.TFRecordDataset(filenames)用于tfrecord格式的数据。

我看到了如何读取数据。现在让我们看一下使用数据。在现有代码中,我们for通过语句逐个使用数据的值。tf.data.Iterator使得逐个使用数据变得更加容易。

tf.data.Iterator

iterator = dataset.make_one_shot_iterator()

通过数据集只迭代一次。无需初始化。

iterator = dataset.make_initializable_iterator()

根据需要迭代数据集。需要初始化每个epoch。

iterator = dataset.make_one_shot_iterator()
X, Y = iterator.get_next()
with tf.Session() as sess:
    print(sess.run([X, Y]))        # >> [1.822, 74.82825]
    print(sess.run([X, Y]))        # >> [3.869, 70.81949]
    print(sess.run([X, Y]))        # >> [3.911, 72.15066]
[1.822, 74.82825]
[3.869, 70.81949]
[3.911, 72.15066]

处理TensorFlow中的数据

dataset = dataset.shuffle(1000)
dataset = dataset.repeat(100)
dataset = dataset.batch(128)
dataset = dataset.map(lambda x: tf.one_hot(x, 10)) # convert each elem of dataset to one_hot vector

我们应该使用tf.data?

对于原型设计,feed dict可以更快更容易编写(pythonic)

当您有复杂的预处理或多个数据源时,tf.data很难使用

NLP数据通常只是一个整数序列。在这种情况下,将数据传输到GPU非常快,因此tf.data的加速并不是那么大

优化

使用优化器非常简单。然而只有几行代码可以方便地使用(差分,更新)复杂的配置的优化器。

optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01).minimize(loss)
_, l = sess.run([optimizer, loss], feed_dict={X: x, Y:y})

会话查看损失所依赖的所有可训练变量并更新它们

tf.Variable(initial_value=None, trainable=True,...)

优化程序会自动计算和更新衍生值。因此,它适用于所有相关变量。在某些情况下,可能存在不应更新的变量。在这种变量的情况下,trainable=False通过仅将其指定为选项,可以很容易地将其设置为不训练

除了上面使用的GD opmizer之外,还提供了各种其他优化器作为张量流函数。以下是优化器列表。

  • tf.train.Optimizer

  • tf.train.GradientDescentOptimizer

  • tf.train.AdadeltaOptimizer

  • tf.train.AdagradOptimizer

  • tf.train.AdagradDAOptimizer

  • tf.train.MomentumOptimizer

  • tf.train.AdamOptimizer

  • tf.train.FtrlOptimizer

  • tf.train.ProximalGradientDescentOptimizer

  • tf.train.ProximalAdagradOptimizer

  • tf.train.RMSPropOptimizer


二、TensorFlow逻辑回归


数据集:MNIST Database

每个图像都是一个28x28阵列,被展平为1-d张量,大小为784

X: 手写数字图像

任务:识别图中的数字

模型:Y_predicted = softmax(X * w + b)

损失函数(交叉熵损失): -log(Y_predicted)

1.处理数据

import utils
import tensorflow as tf
import time
learning_rate = 0.01
batch_size = 128
n_epochs = 30
n_train = 60000
n_test = 10000

mnist_folder = 'data/mnist'
utils.download_mnist(mnist_folder) 
train, val, test = utils.read_mnist(mnist_folder, flatten=True)

train_data = tf.data.Dataset.from_tensor_slices(train)
train_data = train_data.shuffle(10000) #
train_data = train_data.batch(batch_size)

test_data = tf.data.Dataset.from_tensor_slices(test)
test_data = test_data.batch(batch_size)

2.创建一个迭代器并确定如何初始化它。

iterator = tf.data.Iterator.from_structure(train_data.output_types,train_data.output_shapes)
img,label = iterator.get_next()
train_init = iterator.make_initializer(train_data)
test_init = iterator.make_initializer(test_data)

3.并生成模型的参数w和b。设置形状以适合img大小。然后,w被初始化为具有均值0和标准差方差0.01的正态分布,并且b被初始化为0。

w = tf.get_variable(name='weight', shape=(784,10), initializer=tf.random_normal_initializer(0,0.01))
b = tf.get_variable(name='bias', shape=(1,10), initializer=tf.zeros_initializer())

4.定义logit和softmax函数并定义损失函数。

logits = tf.matmul(img,w) + b

entropy = tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits, labels=label, name='entropy')
loss = tf.reduce_mean(entropy, name = 'loss')

5.优化器使用Adam优化器。

optimizer = tf.train.AdamOptimizer(learning_rate).minimize(loss)

6.定义预测操作,确认预测是否正确,以及精度计算操作。

preds = tf.nn.softmax(logits)
correct_preds = tf.equal(tf.argmax(preds, 1), tf.argmax(label, 1))
accuracy = tf.reduce_sum(tf.cast(correct_preds, tf.float32))

7.现在让我们可视化及定义session内容。

writer = tf.summary.FileWriter('./graphs/logreg', tf.get_default_graph())

gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.333)
if 'session' in locals() and session is not None:
    print('Close interactive session')
    session.close()
with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) as sess:
    start_time = time.time()
    # 初始化变量
    sess.run(tf.global_variables_initializer())
    # 训练
    for i in range(n_epochs):
        sess.run(train_init) # drawing samples from train_data
        total_loss = 0
        n_batches = 0
        try:
            while True:
                _, l = sess.run([optimizer, loss])
                total_loss += l
                n_batches += 1
        except tf.errors.OutOfRangeError:
            pass
        print('Average loss epoch {0}: {1}'.format(i, total_loss/n_batches))
    print('Total time: {0} seconds'.format(time.time() - start_time))

    # test the model
    sess.run(test_init) # drawing samples from test_data
    total_correct_preds = 0
    try:
        while True:
            accuracy_batch = sess.run(accuracy)
            total_correct_preds += accuracy_batch
    except tf.errors.OutOfRangeError:
        pass

    print('Accuracy {0}'.format(total_correct_preds/n_test))
writer.close()

输出:

Average loss epoch 0: 0.3655088067747826
...
Average loss epoch 29: 0.25185961714664173
Total time: 23.884480476379395 seconds
Accuracy 0.917

写在最后


本节学习来源斯坦福大学cs20课程,有关自学与组队学习笔记,将会放于github仓库与本公众号发布,欢迎大家star与转发,收藏!

cs20是一门对于深度学习研究者学习Tensorflow的课程,今天学习了三节,非常有收获,并且陆续将内容写入jupytebook notebook中,有关这个源代码及仓库地址,大家可以点击阅读原文或者直接复制下面链接!

直通车:

640?wx_fmt=png


640?wx_fmt=png

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值