单源最小路径长度Dijkstra算法代码实现(有权图)

main.cpp

#include<stdio.h>
#include<stdlib.h>
#include"Dijkstra.h"

void main()
{
	printf("无向图\n");
	MGraph Graph;
	Graph = BuildGraph();
	Dijkstra(Graph,1);
}

Dijkstra.h

#ifndef Dijkstra

#define MaxVertexNum 100 //图的最大节点
#define INFINITY 0xFFFF

typedef int Vertex; //顶点下标
typedef int WeigthType; //边的权值
typedef int DataType; //顶点的数据类型

//边的定义
typedef struct ENode {
	Vertex v1, v2;
	WeigthType weigth;
}*PtrToENode;
typedef PtrToENode Edge;

//图的定义
typedef struct GNode {
	int Nv; //顶点数量
	int Ne; //边的数量
	WeigthType G[MaxVertexNum][MaxVertexNum];//邻接矩阵,存边的权重
	DataType Data[MaxVertexNum];//顶点的数据
}*PtrToGNode;
typedef PtrToGNode MGraph;


void InsertEdge(MGraph Graph, Edge E);
MGraph BuildGraph();
void Dijkstra(MGraph Graph, Vertex S);


#endif // !BFS
#pragma once

Dijkstra.cpp

#include"Dijkstra.h"
#include"stdlib.h"
#include"stdio.h"


int dist[MaxVertexNum];
int path[MaxVertexNum];
int collected[MaxVertexNum];


//创建一个没有边的图
MGraph CreatGraph(int VertexNum)
{
	Vertex V, W;
	MGraph Graph;

	Graph = (MGraph)malloc(sizeof(struct GNode));
	if (!Graph)
	{
		printf("Graph生成失败");
		exit(-1);
		return NULL;
	}
	Graph->Nv = VertexNum;
	Graph->Ne = 0;

	for (V = 0; V < Graph->Nv; V++)
	{
		for (W = 0; W < Graph->Nv; W++)
		{
			Graph->G[V][W] = INFINITY;
		}
	}

	return Graph;
}

//构建一个图
MGraph BuildGraph()
{
	int Nv, i;
	Vertex V;
	Edge E;
	MGraph Graph;

	printf_s("请输入插入节点的个数\n");
	scanf_s("%d", &Nv);

	Graph = CreatGraph(Nv);

	printf_s("请输入插入边的个数\n");
	scanf_s("%d", &(Graph->Ne));
	if (Graph->Ne != 0)
	{
		E = (Edge)malloc(sizeof(struct ENode));
		if (!E)
		{
			printf("E生成失败");
			exit(-1);
			return NULL;
		}
		for (i = 0; i < Graph->Ne; i++)
		{
			printf("请输入第%d条边:  V1,V2,权重\n", i);
			scanf_s("%d %d %d", &(E->v1), &(E->v2), &(E->weigth));
			InsertEdge(Graph, E);
		}
	}

	for (V = 0; V < Graph->Nv; V++)
	{
		printf("请输入第%d个顶点的数据\n", V);
		scanf_s("%d", &(Graph->Data[V]));
	}

	return Graph;
}



//返回邻接点中dist[W]最小的
Vertex FindMinDist(MGraph Graph)
{
	Vertex MinV = -1;
	Vertex V;

	int MinDist = INFINITY;

	for ( V = 0; V < Graph->Nv; V++)
	{
		//第一次:以S为中心进行邻接点的扫描
		if (collected[V] == false && dist[V] < MinDist)
		{
			//更新最小距离和最小位置
			MinDist = dist[V];
			MinV = V;
		}
	}

	if (MinDist < INFINITY)
	{
		return MinV;
	}
	else
	{
		return -1;
	}

}


void Dijkstra (MGraph Graph, Vertex S)
{   
	Vertex V, W;
	//初始化path和dist

	for ( V = 0; V < Graph->Nv; V++)
	{
		dist[V] = Graph->G[S][V];
		if (dist[V] < INFINITY)
		{
			path[V] = S;
		}
		else
		{
			path[V] = -1;
		}
		collected[V] = false;
	}

	dist[S] = 0;
	collected[S] = true;

	while (1) 
	{
		V = FindMinDist(Graph);
		if (V == -1)
		{
			break;
		}

		collected[V] = true;

		for ( W = 0; W < Graph->Nv; W++)
		{
			if (collected[W] == false && Graph->G[V][W] < INFINITY)
			{
				if (Graph->G[V][W] < 0) //排除负边
				{
					printf("出现负边");
				}
				else
				{
					if (dist[V] + Graph->G[V][W] < dist[W])
					{
						dist[W] = dist[V] + Graph->G[V][W];
						path[W] = V;
					}
				}
			}

		}

	} 

	for (W = 0; W < Graph->Nv; W++)
	{
		printf("第%d节点 到指定节点最小距离是%d\n", W, dist[W]);
	}

	printf("路径数组 :\n");
	for (W = 0; W < Graph->Nv; W++)
	{
		printf("%d\n", path[W]);
	}
}



//插入边
void InsertEdge(MGraph Graph, Edge E)
{
	Graph->G[E->v1][E->v2] = E->weigth;
	Graph->G[E->v2][E->v1] = E->weigth;
}





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鄢广杰

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值