数据结构-深度优先搜索(DFS)实践

深度优先搜索(DFS)是一种用于遍历或搜索树结构或图结构的算法。DFS探索尽可能深的分支,直到到达末端,然后回溯到最近的分叉点再探索未遍历的分支。可以通过递归或使用栈实现非递归版本的DFS。

下面是一个Java实现的深度优先搜索的例子,用于遍历图结构。我们将创建一个Graph类来表示图,并在其中实现DFS:

import java.util.*;

// 图的表示
class Graph {
    private int V;   // 顶点的数量
    private LinkedList<Integer> adj[]; // 邻接表

    // 构造函数
    Graph(int v) {
        V = v;
        adj = new LinkedList[v];
        for (int i = 0; i < v; ++i)
            adj[i] = new LinkedList();
    }

    // 添加边到图
    void addEdge(int v, int w) {
        adj[v].add(w); // 将 w 添加到 v 的链表中
    }

    // 从给定的节点开始进行DFS
    void DFS(int v) {
        // 标记所有的顶点为未访问
        boolean visited[] = new boolean[V];

        // 调用递归帮助函数进行DFS遍历
        DFSUtil(v, visited);
    }

    // DFS的递归方法
    void DFSUtil(int v, boolean visited[]) {
        // 标记当前节点为已访问并打印
        visited[v] = true;
        System.out.print(v + " ");

        // 访问所有邻接节点
        Iterator<Integer> i = adj[v].listIterator();
        while (i.hasNext()) {
            int n = i.next();
            if (!visited[n])
                DFSUtil(n, visited);
        }
    }

    // 主函数
    public static void main(String args[]) {
        Graph g = new Graph(4);

        g.addEdge(0, 1);
        g.addEdge(0, 2);
        g.addEdge(1, 2);
        g.addEdge(2, 0);
        g.addEdge(2, 3);
        g.addEdge(3, 3);

        System.out.println("深度优先遍历,从顶点 2 开始:");

        g.DFS(2);
    }
}

在以上代码中,我们首先定义了一个图类Graph,它包含了一个顶点数量V和一个邻接表adj来存储图的边。addEdge方法用于添加一条边到图中。DFS方法是深度优先搜索的入口点,它初始化一个访问数组,然后调用递归的DFSUtil方法来实际进行搜索。

DFSUtil方法会打印当前节点,然后迭代访问所有未访问的邻接顶点。通过递归调用DFSUtil,算法能够深入到每一个分支。

最后,在main方法中,我们创建了一个图的实例,添加了一些边,然后从顶点2开始进行深度优先搜索。

请注意,在实际应用中,图可能包含环,这种情况下,需要确保我们不会无限地访问同一节点。在本例中,visited数组确保了每个节点只会被访问一次,防止了可能的无限循环。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员爱学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值