特征向量矩阵,特征值矩阵,矩阵的对角化分解

特征向量矩阵S,由矩阵A的所有线性无关的特征向量按列排列组成的矩阵。

特征值矩阵\Lambda,有矩阵A的所有特征值放在对角线位置组成的对角矩阵。

 

矩阵对角化:AS = S\Lambda(讲AS展开可以推导出这个公式)

上式两边的左边同时乘以S-1,得出S-1AS = \Lambda。这就是方阵的对角化公式

上式两边的右边同时乘以S-1,得出A = S\LambdaS-1,这就是矩阵的句对话分解。

 

如果A的特征值都不相同,则A存在n个线性无关的特征向量,并且可对角化。

存在n个线性无关的特征向量是可以矩阵可以对角化的前提。

如果A存在重复的特征值,可能存在n个线性无关的特征向量,也可能不存在,要视具体情况而定。

 

求解一阶差分方程组,给定向量u(0) 求解u(k+1) = Au(k)

u1 = Au0

u2 =A*Au0.

可知u(k) = A(k)u(0)。这就是一阶差分方程的解。

利用矩阵的幂可以求解斐波那契数列的代数表达式。

f(k+2) = f(k+1)+f(k) 这是斐波那契数列的递归式,是一个二阶差分方程。

f(k+1) = f(k+1) 这个式子与上面的式子组成一个线性系统。由此可以求出代数表达式。

 

 

  • 3
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

guanguanboy

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值