对称矩阵的特征值与特征向量

对称矩阵: A = A的转置

这里讨论的是实对称矩阵

两个好的性质:

1, 特征值是实数

2,特征向量是两两正交的

 

一个对称矩阵A可以进行如下分解:

A=Q\LambdaQ的转置

 

对于对称矩阵来说,有一个性质:主元的符号与特征值得符号是相同的。即正主元的个数等于正的特征值的个数。

 

正定矩阵:首先是一个对称矩阵,是对称矩阵一个很好的子类。正定矩阵的所有特征值都是正数。所有的主元都是正数。

所有的子行列式都是正的。

展开阅读全文

没有更多推荐了,返回首页