关于归一化的数学原理

有时候我们需要对数据范围进行归一化,比如灰度归一化等。

那么归一化背后的数学推导和原理是什么呢?
在这里插入图片描述
我们需要将左边的范围“归一化”至右边的范围,反之亦然。
左边:

min=b;
max=a;
range_zuo=a-b;

右边:

min=d;
max=c;
range_zuo=c-d;

如何保证左边归至右边的过程是等比例的呢?

即:已知初始范围中的a1数值,映射到最终范围的x为?
在这里插入图片描述
解释:
a1∈[b,a],a1在b~a之中,b为最小值,a为最大值。(a1-b)/(a-b)表示b到a1的长度占整个初始范围的比例。

如果初始范围到最终范围是等比例映射,那么x-d的程度占最终范围的距离应与(a1-b)/(a-b)一样。
即:

(a1-b)/(a-b) = (x-d)/(c-d)   %等比例

则:x=(c-d).((a1-b)/(a-b))+d
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值