深度学习——归一化

1.原理

1.1 数量单位/权重

假设一个函数:健康=3✖️身高+2✖️体重(身高:m,体重:斤)

现在给出一个例子:1.6m130斤的人1,1.9m129的人2

按照函数计算,你会发现他们的健康值差不多,故需要进行统一数量级,排除单位的干扰。有以下两种方法:

1. 最小-最大归一化(Min-Max Normalization)

​​​​​最小-最大归一化将原始数据缩放到一个指定的最小和最大值(通常是0到1或-1到1)之间。公式如下:

其中:

  • xx是原数据点。
  • min(x)是数据集中的最小值。
  • max(x)是数据集中的最大值。
  • x′ 是归一化后的数据点。

优点

  • 保留了数据的原始分布。
  • 新的最小值和最大值是预先定义的,如0和1。

缺点

  • 对异常值敏感,因为异常值会拉扯整个数据的尺度。

——当出现3m的人,按照此公式会一直保留异常值的影响

2. 标准化(Standardization,Z-score Normalization)

标准化涉及将数据的均值转换为0,标准差转换为1。这种技术也称为Z-score归一化。公式如下:

其中:

  • x 是原始数据点。
  • μ 是数据的均值。
  • σ 是数据的标准差。
  • z 是标准化后的数据点。

优点

  • 去除数据的均值,缩放到位方差。
  • 不受异常值影响,因为它们不改变基于均值和标准差的计算。

缺点

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值