第一节
所谓LSM算法就是那个权重的更新法则,是和误差相关的
这里面所说的再讨论就是另一种最小化代价函数J的方法,不过这次不是迭代更新然后求最小化了,而是直接求出 θ 的解了
所谓局部加权的意思就是,对于一个输入,侧重考虑输入点附近的样本(可以看到那个权重的选取类似于一个高斯函数,离
x
越近,值越大,考虑的权重也越大),频带宽大小决定了你的“附近”到底是多宽(相当于高斯函数的胖瘦)。非参数的意思就是,对于每个输入,