Anaconda如何配置多版本Python

Background:随着Python3 被越来越多的开发者所接受,但很多遗留的老系统依旧运行在 Python2 的环境中,因此有时你需要在同一个设备上,在两个Python版本中进行开发和调试。


系统环境:

操作系统:windows8.1中文版(64bit)


解决办法:如何在同一台设备系统中同时配置Python2 和 Python3 是开发者不得不面对的问题,一个利好的消息是,Anaconda 能完美解决Python2 和 Python3 的共存问题。

1、Anaconda的下载与安装

根据自己的系统下载对应的安装包,下载地址:

清华大学镜像:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/

南方科技大学镜像:https://mirrors.sustc.us/anaconda/archive/

在此建议下载python3.6以上的安装包(如:Anaconda3-5.1.0-Windows-x86_64.exe),然后双击直接进行安装。

1)建议选择不安装在系统盘中:


2)选择把Anaconda添加到系统环境变量中:


3)耐心等待:


4)跳过vscode的安装



5)安装完成后,在Windows的窗口中搜索anaconda,打开anaconda navigator,进入anaconda:


如果打开导航后无法进入anaconda界面,则检查电脑中是否安装visual c++ redistributable:


如果未安装,需安装visual c++ Redistributable。VisualRedistributable c++ 2015下载地址:

https://www.microsoft.com/en-us/download/details.aspx?id=48145

进入anaconda navigator后,启动Spyder开始编程测试,在此anaconda的安装步骤已经完成。



2、设置anaconda国内镜像

在命令行窗口中执行:

添加Anaconda的TUNA镜像  

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/  

设置搜索时显示通道地址  

conda config --set show_channel_urls yes 


3、查看Python版本

可以使用exit()命令退出当前的Python交互界面。


4、为了能够在Python2.7版本下进行开发,我们需要创建一个Python2.7的开发环境。

1)预操作

查看conda的版本:


查看当前环境:


其中的E:\Software\anaconda3表示Python3.6的安装路径,前面的*表示当前命令行所处于的Python版本(Python3.6)。

2)创建Python2.7环境,执行create命令如下:

conda create --name py27 python=2.7 #创建python2.7的环境,对应环境和文件夹名称:py27


看一下结果,表示Python2.7的环境创建成功了。


3)激活Python2.7环境:

activate py27  #py27为上一步创建Python2.7环境时命名的名字

4)查看此时的Python版本:


同样的,我们可以使用exit()命令退出Python交互界面。

到此,Anaconda配置多版本Python的步骤已经完成!

5、若是想在Spyder IDE上也能进行Python2.7版本的开发,还可以安装对应于Python2.7环境的Spyder IDE。

因为前面anaconda安装时所安装的Spyder是对应于Python3.6版本的,所以如果我们要使用对应于Python2.7版本的Spyder,则还需要安装一个对应于Python2.7版本的Spyder。

1)安装Spyder IDE,在命令行输入:

conda install spyder



因为在前面已经添加过Anaconda的TUNA镜像 ,所以这里的安装过程是比较省时的,耐心等待一下。

2)打开Spyder。在Python2.7的环境下,在命令行输入:

spyder

即可打开Spyder(Python2.7) IDE。


测试Spyder IDE。


3)所以以后每次要打开Spyder(Python 2.7)  IDE,都需要进入命令行,先进入Python 2.7版本的环境,再输入spyder命令来打开。而通过Windows桌面软件打开的Spyder IDE,默认是对应于Python3.6版本的。






### 如何在 Python 3.8 环境下通过 Conda 安 PyTorch 为了确保在 Python 3.8 的环境中正确安 PyTorch,可以通过以下方法实现: #### 创建新的 Conda 环境并指定 Python 版本 首先需要创建一个新的 Conda 环境,并明确指定所需的 Python 版本为 3.8。这一步非常重要,因为不同的项目可能需要不同版本Python 和库。 ```bash conda create -n my_pytorch_env python=3.8 ``` 激活刚刚创建的环境 `my_pytorch_env`: ```bash conda activate my_pytorch_env ``` #### 使用 Conda 安 PyTorch Conda 提供了一个简单的方式来安特定配置下的 PyTorch。以下是针对 CUDA 支持的不同情况的具体命令: - **对于支持 GPU (CUDA 11.7)** 的系统,可以运行如下命令来安带有 CUDA 加速功能的 PyTorch[^1]: ```bash conda install pytorch torchvision torchaudio cudatoolkit=11.7 -c pytorch -c nvidia ``` - 如果目标设备不支持 GPU 或者仅需 CPU 版本,则可执行以下命令以安纯 CPU 版本的 PyTorch[^2]: ```bash conda install pytorch torchvision torchaudio cpuonly -c pytorch ``` 上述命令会自动解析依赖关系并将合适的 PyTorch 及其相关组件安至当前活动的 Conda 环境中。 #### 验证安是否成功 完成安之后,可通过导入模块的方式确认 PyTorch 是否正常工作以及是否存在可用的 CUDA 设备[^4]。 打开终端或者脚本编辑器输入以下代码片段测试: ```python import torch print(f"PyTorch Version: {torch.__version__}") if torch.cuda.is_available(): print("CUDA is available!") else: print("No CUDA detected.") ``` 如果一切设置无误,在具备 NVIDIA 显卡的情况下应该能够看到类似于 `"CUDA is available!"` 这样的输出;反之则提示未检测到 CUDA。 --- ### 注意事项 尽管 Miniconda 是轻量级的选择用于管理多个独立的 Python 环境及其各自的软件包集合[^3],但在实际操作过程中仍建议遵循官方文档推荐的最佳实践路径来进行具体工具链组合部署。
评论 22
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值