python小白进阶篇之高等数学篇2

       通过昨天的基本学习了解到了高等数学中的函数(基本学习中高等数学、概率、线性代数)都有所涉及,找到自身不熟悉的才是关键。

今天了解到的主要是定积分和多元函数,当然从中找到自身不熟悉的部分进行补充填写。

一、定积分

首先知道定积分的基本写法,表示函数f(x)在区间 [a,b]上的累积效应或面积。定积分的定义可以通过以下步骤来理解:

分割区间: 将区间 [a,b]分割成 n 个小区间,每个小区间的长度为 Δxi,其中

且 x0=a,xn=b。

取样本点: 在每个小区间

内取一个样本点 ξi。

构造黎曼和: 构造黎曼和

表示函数 f(x) 在区间 [a,b]上的近似累积效应或面积。

1.2.几何意义

定积分

  1. 取极限: 当分割的区间数 n 趋向于无穷大,且每个小区间的长度 Δxi趋向于零时,黎曼和的极限即为定积分:

  2. 说明:

    黎曼和是通过将区间 [a,b]分成 n 个等宽的子区间,每个子区间的宽度为

  3. 然后选择每个子区间内的一点 xi,计算矩形的面积之和来近似积分的。

  4. 其中:

  5. Sn是黎曼和的值。

  6. n是子区间的数量。

  7. xi是第 i个子区间 [xi−1,xi]内的一点。

  8. Δx是每个子区间的宽度。

的几何意义是函数 f(x) 在区间 [a,b]上的曲线下面积。具体来说:

  1. 如果 f(x)≥0,则定积分表示曲线下方的面积。

  2. 如果 f(x)≤0,则定积分表示曲线上方的面积的负值。

1.3.性质

线性性质:

其中 c 和 d 是常数。

区间可加性:

积分上下限交换:

定积分中值定理

如果函数 f(x) 在闭区间 [a,b] 上连续,则存在 c∈[a,b],使得:

证明:

设f(x)在[a,b]上连续,因为闭区间上连续函数必有最大最小值,不妨设最大值为M,最小值为m,最大值和最小值可相等。

两边同时积分可得:

同除以b-a从而得到:

由连续函数的介值定理可知,必定:

使得

即:

相比于不定积分求原式,定积分理解的关键当成求面积,当然在计算过程中也都是求原式,还有加减乘法法则需要特别注意!!

1.4.微积分基本公式

牛顿-莱布尼茨公式

微积分基本定理分为两部分,分别描述了积分上限函数的性质和定积分的基本公式。

今天上课的例子说明也很形象地得出需要做出的步骤

例子

1.求

2.求

1.5.定积分的应用

这个地方是关于定积分处理复杂时通过换元法进行还元:

1.选择合适的变量替换: 选择一个合适的变量替换 t=g(x),使得积分变得更简单,并求反函数:

与前面的反函数知识结合起来

2.进行对导数求导进行还元

3.替换积分变量,将原积分中的x替换成t,并且将dx替换为:

4.确定新的积分上下限: 将原积分的上下限 a 和 b 替换为新的上下限 t 的值。即 t 的下限为 t1,上限为 t2。

5.求解新积分: 求解新的定积分

当然目前我的感受是对于编程数学也不像考研或者对数学掌握特别熟练,我们需要知道这个数学知识是指什么意思,大概就是目前所需要掌握到的程度。希望一起战斗的小伙伴也不必紧张,对于数学我们先从基本一点一点开始熟悉。

二、多元函数

2.1二元极限

设函数 f(x,y) 在点 (a,b) 的某个去心邻域内有定义。如果对于任意给定的正数 ϵ,总存在正数 δ,使得当

总有:

∣f(x,y)−L∣<ϵ

则称 L 为函数 f(x,y)在点 (a,b)处的极限,记作:

这是多元函数中二元函数的概念。

几何意义中我们可以得知的是

当点 (x,y)从任意方式趋近于点 (a,b) 时,函数 f(x,y) 的值趋近于 L。换句话说,函数图像在二维平面的点 (a,b)附近趋近于一个三维立体平面上的点 (a,b,L)。可将(a,b)想象为(a,b,L)投影在二维平面的点。

如果 (x,y)从不同方式趋近于点 (a,b),函数 f(x,y) 的值不相等,则表示 f(x,y) 不存在。

举一个简单的例子

沿 x轴趋近: 当 y=0 时,

沿 y轴趋近: 当 x=0时,

沿任意直线 y=kx趋近: 当 y=kx 时,

沿抛物线

趋近: 当

由于函数在点 (0,0)的任意方向上的极限都为 0,因此:

作为一个简单的例子带领大家去了解一下基本的二元极限

2.2偏导数

偏导数是‌多元函数求导的一种形式,表示在多个自变量中,当其中一个自变量改变而其他自变量保持不变时函数值的变化率。

这实质上是将其他自变量视为常数,然后按照单变量函数求导的方法进行运算。‌

定义

设函数 f(x,y) 在点 (x0,y0) 的某个邻域内有定义。如果极限:

存在,则称此极限为函数 f(x,y)在点 (x0,y0) 处对 x 的偏导数,记作:

类似地,如果极限:

存在,则称此极限为函数 f(x,y)在点 (x0,y0)处对 y的偏导数,记作:

2.3全微分

如果函数z=f(x, y)在点(x, y)处的全增量

可以表示为

其中A、B不依赖于Δx, Δy,仅与x, y有关,ρ趋近于0(ρ=√[(Δx)²+(Δy)²]),此时称函数z=f(x, y)在点(x, y)处可微分,AΔx+BΔy称为函数z=f(x, y)在点(x, y)处的全微分,记为dz即dz=AΔx +BΔy。

可微的必要充分条件可以单独再了解一下,这里对基本概念作一个大概的解释。

2.4梯度

梯度是一个向量,表示多元函数在某一点处的最大变化率和变化方向。

设 f(x1,x2,…,xn)是一个定义在 Rn(n维欧几里得空间) 上的多元函数,函数 f在n维向量点 a=(a1,a2,…,an)处的梯度定义为:

其中是函数 f 在点 a 处对第 i 个自变量的偏导数。

性质

  1. 最大变化率:梯度 ∇f(a) 的方向是函数 f在点 a 处变化率最大的方向。

  2. 变化率:梯度 ∇f(a) 的大小(模)是函数 f 在点 a 处沿梯度方向的变化率。

沿梯度方向是是函数 f在点 a 处变化率增加最大的方向;沿梯度反方向是是函数 f在点 a 处变化率减小最大的方向;沿梯度垂直方向函数 f在点 a 处变化率为0。

梯度下降

梯度下降是一种优化算法,用于寻找多元函数的最小值。其基本思想是沿着函数的负梯度方向逐步更新参数,以减少函数值。

算法步骤

初始化:选择一个初始点 x0。

迭代更新:对于每次迭代 k,计算当前点的梯度。

对于我们真的从事算法工程师的行业我想相关关于迭代更加需要注意。

2.5二重积分

二重积分是多元微积分中的一个重要概念,用于计算二维区域上的函数积分。它通常用于计算平面区域上的面积、质量、重心等问题。二

重积分的基本思想是将一个二维区域分割成无数个小区域,然后在每个小区域上计算函数值的积分。

定义

设 f(x,y)f(x,y) 是定义在平面区域 D 上的函数,二重积分记作:

其中 dA表示面积元素。

高等数学最后我们接触的内容是三角函数,跟高中知识有高度的类似,通过一些网课和总结能获取大部分我们所需要的知识,高等数学篇幅就告一段落。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值