TensorFlow:
- 使用图(graph)来表示计算任务。
- 在被称之为会话(Session)的上下文(context)中执行图。
- 使用tensor表示数据
- 使用变量(Variable)维护状态
使用feed和fetch可以为任意的操作(arbitrary operation)赋值或者从其中获得数据。
综述TensorFlow是一个编程系统,使用图来表示计算任务。图中的节点被称之为op(operation的缩写)。一个op获得0个或多个Tensor,执行计算,产生0个或多个Tensor。每个Tensor是一个类型化的多维数组。例如,你可以将一小组图像集表示为一个四维的浮点数组,这个四维度分别是[batch, height, width, channels]。
一个TensorFlow图描述了计算的过程。为了进行计算图必须在会话里启动。会话将图的op分发到诸如CPU或GPU之类的设备上,同时提供执行op的方法。这些方法执行后,将产生的tensor返回。
在python语言中,返回的tensor是numpy ndarray对象;在C和C++语言中,返回的tensor是tensorflow::Tensor实例。
2 计算图
TensorFlow是程序通常被组织成一个构建阶段和执行阶段。
在构建阶段,op的执行步骤被描述成一个图。
在执行阶段,使用会话执行图中的op。
例如,通常在构建阶段创建一个图来表示和训练神经网络,然后在执行阶段反复执行图中的训练op。
TensorFlow支持C, C++,python编程语言。目前,TensorFlow的python库更加易用,它提供了大量的辅助函数来构建图的工作,这些函数尚未被C和C++库支持。
三种语言的会话库(Session libraries)是一致的。
3、构建图
构建图的第一步,是创建源op(source op)。源op不需要任何输入,例如 常量(Constant)。源op的输出被传递给其它op做运算。
Python库中,op构造器的返回值代表被被构造出的op的输出,这些返回值可以传递给其它op构造器作为输入。
TensorFlow python库有一个默认图(default graph),op构造器可以为其增加节点。这个默认图对许多程序来说已足够用。。阅读Graph类文档来了解如何管理多个图。
import tensorflow as tf
#创建一个常量op,产生一个1*2矩阵。这个op被作为一个节点加到默认图中
#
#构造器的返回值代表常量op的返回值。
matrix1 = tf.constant([[3.,3.]])
#创建另一个常量op,产生一个2*1矩阵
matrix2 = tf.constant([[2.],[2.]])
#创建一个矩阵乘法matmul op,把‘matrix1’和‘matrix2’作为输入。
#返回值‘product’代表矩阵乘法的结果
product = tf.matmul(matrix1,matrix2)
默认图现在有三个节点,两个 constant() op和一个matmul() op.为了真正进行矩阵相乘运算,并得到矩阵乘法的结果,你必须在会话里启动这个图。
4、在一个会话中启动图
构造阶段完成后,才能启动图。启动图的第一步是创建一个 Session对象,如果无任何创建参数,会话构造器将启动默认图。
欲了解完整的会话API,请阅读Session类。
#启动默认图
sess = tf.Session()
#调用sess的‘run()’方法来执行矩阵乘法op,传
#入‘product’作为该方法的参数。上面提到,‘product’代#表了矩阵乘法op的输出,传入它是向方法表明,我们希望取
#回矩阵乘法的op的输出。
#
#整个执行过程是自动化的,会话负责传递op所需的全部输
#入。op通常是并发执行的。
#
#函数调用‘run(product)’触发图中三个op(两个常量op和#一个矩阵乘法op)的执行。
#
#返回值‘result’是一个numpy'ndarray'对象
result = sess.run(product)
print result
#==>[[12.]]
#任务完成,关闭会话
sess.close()
Session对象在使用完成后需要关闭以释放资源。除了显式调用外,也可使用“with”代码块来完成自动关闭动作。
with tf.Session() as ses:
result = sess.run([product])
print result
在实现上,TensorFlow将图形定义转换成分布式执行的操作,以充分利用可用的计算资源(如CPU或GPU)。一般你不需要显式指定使用CPU还是GPU,TensorFlow能自动检测。如果检测到GPU,TensorFlow会尽可能地利用找到的第一个GPU来执行操作。
如果机器上有超过一个可用的GPU,除第一个外的其它GPU默认是不参与计算的。为了让TensorFlow使用这些GPU,你必须将op明确指派给它们执行。with…Device语句用来指派特定的CPU或GPU执行操作:
with tf.Session() as sess:
with tf.device("/gpu:1"):
matrix1 = tf.constant([[3., 3.]])
matrix2 = tf.constant([[2.],[2.]])
product = tf.matmul(matrix1,matrix2)
...
设备用字符串进行标识。目前支持的设备包括:
- “/cpu:0”:机器的CPU.
- “/gpu:0”:机器的第一个GPU,如果有的话.
- “/gpu:1”:机器的第二个GPU,以此类推.
5、交互式使用
文档中的Python示例使用一个会话Session来启动图,并调用Session.run()方法执行操作。
为了方便使用诸如Ipython之类的Python交互环境,可以使用InteractiveSession代替Session类,使用Tensor.eval()和Operation.run()方法代替Session.run()。这样可以避免使用一个变量来持有会话。
#进入一个交互式TensorFlow会话。
import tensorflow as tf
sess = tf.InteractiveSession()
x = tf.Variable([1.0,2.0])
a = tf.constant([3.0,3.0])
#使用初始化器 initializer op 的run() 方法初始化‘x’
x.initializer.run()
#增加一个剪发sub op,从‘x’减去‘a’。运行减法op,输出结果
sub = tf.sub(x,a)
print sub.eval()
#==>[-2,-1.]
6、Tensor
TensorFlow程序使用tensor数据结构来代表所有的数据,计算图中,操作间传递的数据都是tensor。你可以把TensorFlow看作是一个n维的数组或列表。一个Tensor包含一个静态类型rank,和一个shape。想了解TensorFlow是如何处理这些概念的,参见Rank,Shape,和Type。
7、变量
Variables for more details。变量维护图执行过程中的状态信息。下面的例子演示了如何使用变量实现一个简单的计数器。参见变量章节了解更多细节。
#创建一个变量,初始化为标量0.
state =tf.Variable(0,name = "counter")
#创建一个op,其作用使state增加1
one = tf.constant(1)
new_value =tf.add(state,one)
update =tf.assign(state,new_value)
#启动图后,变量必须先经过‘初始化’(init)op初始化,
#首先必须增加一个‘初始化’op到图中
init_op =tf.initialize_all_variables()
#启动图,运行 op
with tf.Session() as sess:
#运行‘init’op
sess.run(init_op)
#打印‘state’的初始值
print sess.run(state)
#运行 op, 更新‘state’,并打印‘state’
for _ in range(3):
sess.run(update)
print sess.run(state)
#输出:
# 0
# 1
# 2
# 3
代码中assign() 操作是图所描绘的表达式的一部分,正如add(),所以在调用run()执行表达式前,它并不会真正执行赋值操作。
通常会将一个统计模型中的参数表示为一组变量。例如,你可以将一个神经网络的权重作为某个变量存储在一个tensor中,在训练过程中,通过重复运行训练图,更新这个tensor。
8、Fetch
为了取回操作的输出内容,可以在使用Session对象的run()调用执行图时,传入一些tensor,这些tensor会帮助你取回结果。在之前的例子里,我们只取回了单个节点state,但是你也可以取回多个tensor:、
input1 = tf.constant(3.0)
input2 =tf.constant(2.0)
input3 = tf.constant(5.0)
intermed =tf.add(input2,input3)
mul = tf.mul(input1,intermed)
with tf.Session() as sess:
result = sess.run([mul,intermed])
print result
#输出
#[array([21.],dtype=float32),array([7.],dtype=float32)]
需要获取的多个tensor值,在op的一次运行中一起获得(而不是逐个去获取tensor)
8、Feed
上述示例在计算图中引入了tensor,以常量或变量的形式存储。TensorFlow还提供了feed机制,该机制可以临时替代图中的任意操作中的tensor可以对图中的任何操作提交补丁,直接插入一个tensor。
feed使用一个tensor值临时替换一个操作的输出结果。你可以提供feed数据作为run()调用的参数。feed只在调用它的方法内有效,方法结束,feed就会消失。常见的用例是将某些特殊的操作指定为“feed”操作,标记的方法是使用tf.placeholder()为这些操作创建占位符。
input1 = tf.placeholder(tf.float32)
input2 = tf.placeholder(tf.float32)
output = tf.mul(input1,input2)
with tf.Session() as sess:
print sess.run([output],feed_dict={input:[7.],input2:[2.]})
#输出
#[array([14.],dtype =float32)]