排序:
默认
按更新时间
按访问量

Tensorflow之底层操作

1、张量值TF的核心数据单位是张量,张量由一组形成阵列的原始数据组成,张量的阶是它的维数,而它的维数是一哥整数元组,指定了阵列的每个维度的长度:2、TF的低级API可以由两部分独立组成    (1) 构建计算图(tf.Graph)    (2) 运算计算图(tf.Session)    (1) G...

2018-05-19 22:26:50

阅读数:31

评论数:0

Tensorflow的placeholder占位符

placeholer是Tnesorflow的占位符节点,由placeholder方法创建,也是一种常量。由用户在调用run的防擦时才传递,可以看理解为一种形参。在使用时需要用户用字典传递常数值。创建X= tf.placeholder(dtype=tf.float32,shape = [144,10...

2018-05-16 09:48:31

阅读数:37

评论数:0

Tensorflow运作之变量

引自:http://wiki.jikexueyuan.com/project/tensorflow-zh/how_tos/variables.html 在训练模型时,需要使用变量来存储和更新参数。 变量包含张量(Tensor)存放于内存的缓存区。 建模时它们需要明确地初始化,模型训练后它们必...

2017-12-12 16:48:05

阅读数:96

评论数:0

TensorFlow之基本结构

TensorFlow: 使用图(graph)来表示计算任务。 在被称之为会话(Session)的上下文(context)中执行图。 使用tensor表示数据 使用变量(Variable)维护状态 使用feed和fetch可以为任意的操作(arbitrary operation)赋值或者从其中获得数...

2017-12-09 20:34:08

阅读数:66

评论数:0

双线性插值

双线性插值就是在x轴和y轴两个方向上进行插入操作。假设A、B两个点,要在AB中间插入一个点C(C坐标在AB连线上),就直接让C的值落在AB的连线上即可。 例如A点坐标(0, 0),值为3,B点坐标(0,2),值为5,要对坐标(0,1)的点C进行插值,就让C落在AB上,值就为4。 如果C点不在A...

2017-11-29 10:42:47

阅读数:187

评论数:0

ROI Pooling

ROI Pooling 是pooling层的一种,ROI(Region of interest).ROI是指矩形框,往往经过rpn后,输出的不止一个矩形框,所以需要对多个ROI进行pooling。 输入:1、data: 指的是进入RPN层之前的那个Conv层的Feature Map,通常我们称之...

2017-11-29 10:17:44

阅读数:199

评论数:0

Caffe系列之命令行解析

caffe运行提供三种接口:C++接口,python接口和matlab接口caffe的C++主程序(caffe.cpp)放在根目录下的tools文件夹内,当然还有一些其他功能文件,如: convert_imageset.cpp, train_net.cpp, test_net.cpp等也放在这个...

2017-11-25 16:32:10

阅读数:51

评论数:0

caffe系列之:Blob,Layer and Net以及对应配置文件的编写

深度网络是一个组合模型,它由许多相互连接的层组合而成的,它按照一定的策略,一层一层的搭建出自己的模型。它将所有的信息数据定义为blobs,从而进行便利的操作和通讯。Blob是caffe的一种标准的数组,一种统一的内存接口,它详细描述了信息是如何存储的、以及如何在层之间的通讯的。 1、blob ...

2017-11-24 23:20:19

阅读数:96

评论数:0

Caffe系列之常用层

softmax_loss层,Inner_Product层,accuracy层,reshape层和dropout层及其他参数配置。1、softmax-loss softmax-loss层和softmax层计算大致相同,softmax是一个分类器,计算的是类别概率,是Logistic Regress...

2017-11-24 22:40:52

阅读数:60

评论数:0

caffe系列之激活函数

1、Sigmoidlayer{ name: "encod1act" bottom: "encode1" top: "encode1neuron" type: "Sigmoid" }2、R...

2017-11-24 11:47:56

阅读数:64

评论数:0

caffe系列之视觉层

视觉层包括Convolution,Pooling, Local Response Normalization(LRN) ,im2col等 Convolution层和Pooling层大家都已经很熟悉,我们重点关注后面两个。 1、Local Response Normalization(LRN)层...

2017-11-24 11:20:16

阅读数:93

评论数:0

caffe系列之数据层及参数

1、数据层是模型的最底层,是模型的入口,不仅提供数据输入,也提供数据从Blobs转换成别的格式进行保存输出,通常的数据预处理(去均值,放大缩小,裁剪和镜像等)也在这一层实现。 2、数据来源可以是高效的数据库(levelDB和LMDB),也可以来自内存,甚至可以是磁盘的HDF5 文件或图片格式文...

2017-11-23 23:07:26

阅读数:127

评论数:0

caffe的caffe.proto

caffe源码中的caffe.proto在…\src\caffe\proto目录下,在这个文件夹下还有一个.pb.cc和一个.pb.c文件,这两个文件都是由caffe.proto编译出来的。 在caffe.proto中定义了很多结构化数据,包括: BlobProto Datum FillerPa...

2017-11-19 22:52:45

阅读数:58

评论数:0

大数处理问题

http://blog.csdn.net/v_july_v/article/details/7382693: 原理讲解 http://blog.csdn.net/v_JULY_v/article/details/6403777: 程序实现 原则:大而化小,分而治之(hash映射) 解决方法:...

2017-11-15 17:22:17

阅读数:56

评论数:0

Xception_深度可分卷积

转载自:http://blog.csdn.net/wangli0519/article/details/73004985 卷积神经网络中Inception模块是在在普通卷积和深度可分卷积操作之间一种中间状态。基于此,深度可分卷积可理解为最大数量tower的INception模块。根据Incept...

2017-11-13 19:44:28

阅读数:290

评论数:0

C++_STL之string用法

1、string之substrstring substr (size_t pos = 0, size_t len = npos) const;产生子串 返回一个新建的初始化为string对象的子串拷贝string对象 从pos开始,跨越len个字符(包括字符串的结尾)。 pos第一个字符的位...

2017-09-06 16:21:41

阅读数:85

评论数:0

python_变量前加*或者**

当函数要接受元组或者字典参数时,它分别使用和*前缀。在变量前加*,则多余的函数参数会作为一个元组存在args中,如:def func(*ages):func(1,2,3) #args表示(1,2,3)这个元组如果使用**前缀,多余的参数会被认为是字典def func(**args):func(a=...

2017-09-04 22:24:01

阅读数:339

评论数:0

GAN—生成对抗网络

原理: 假设我们有两个网络:一个生G(Generator),一个判别D(Discriminator)。G是一个生成图片的的网络,它接受一个随机的噪声z,通过这个噪声生成图片,记做G(z)。D是一个判别网络,判断一张图片是不是“真实的”。它的输入参数是x,x代表一张图片的。输出D(x)代表x为真实...

2017-09-01 20:31:55

阅读数:576

评论数:0

数字的排序算法—计数排序、桶排序和基数排序

计数排序 当输入元素是n个0到k之间的整数时,他的运行时间是O(n+k),计数排序不是比较排序,它快于任何比较算法。用来计数的数组C的长度取决于排序数组的数据范围,如果数据范围很大,需要大量的数组。但是计数排序可以在基数排序的的算法范围来排序数据范围很大的数组。 步骤: 1、找到数据最小元素...

2017-08-29 22:18:05

阅读数:124

评论数:0

caffe之Protocol Buffers学习

转载自http://blog.csdn.net/langb2014/article/category/5998589/5 1概述 Protocol Buffers是在以后纵轻便高效的结构化数据存储格式,可用于结构化数据串行化,或者说序列化。它很适合做数据存储或者说数据交换格式。提供了多种语言的...

2017-08-15 23:17:03

阅读数:133

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭