题意:
找出一个n*n的矩阵,这里面的数是一个[1,n*n]的全排列,要求所有行所有列的和为奇数;n为奇数;
思路:
可以发现n为奇数的时候就是每行每列的个数都是奇数,所有每行每列里面的奇数的个数都是奇数,所有就可以想到中间是一个奇数组成的45度的正方形,其他是偶数;正好用完了所有的偶数和奇数;
#include <bits/stdc++.h>
#define pr(x) cout << #x << "= " << x << " "
#define pl(x) cout << #x << "= " << x << endl;
#define Memset(x, a) memset(x, a, sizeof(x))
#define ll __int64
using namespace std;
template<class T> void read(T&num) {
char CH; bool F=false;
for(CH=getchar();CH<'0'||CH>'9';F= CH=='-',CH=getchar());
for(num=0;CH>='0'&&CH<='9';num=num*10+CH-'0',CH=getchar());
F && (num=-num);
}
int stk[70], tp;
template<class T> inline void print(T p) {
if(!p) { puts("0"); return; }
while(p) stk[++ tp] = p%10, p/=10;
while(tp) putchar(stk[tp--] + '0');
putchar('\n');
}
const ll mod=1e9+7;
const double pi=acos(-1.0);
const int inf=0x3f3f3f3f;
//const ll inf= 0x3f3f3f3f3f3f3f3fLL;
const int N=3e5+10;
const int maxn=1e3+20;
const double eps=1e-12;
int n;
int ans[50][50];
int main(){
std::ios::sync_with_stdio(false);
std::cin.tie(0);
read(n);
int c1=1,c2=2,cx=n/2+1,cy=n/2+1; //cx,cy是中心点横纵坐标
for(int i=1; i<=n; i++){
for(int j=1; j<=n; j++){
if(abs(cx-i)+abs(cy-j)<=n/2)ans[i][j]=c1,c1+=2; //判断的式子画出的图形组成一个45度的正方形
else ans[i][j]=c2,c2+=2;
}
}
for(int i=1; i<=n; i++){
for(int j=1; j<n; j++)
cout<<ans[i][j]<<" ";
cout<<ans[i][n]<<"\n";
}
return 0;
}