codeforces 710 C. Magic Odd Square(构造)


传送门:C. Magic Odd Square

题意:


找出一个n*n的矩阵,这里面的数是一个[1,n*n]的全排列,要求所有行所有列的和为奇数;n为奇数;

思路:

可以发现n为奇数的时候就是每行每列的个数都是奇数,所有每行每列里面的奇数的个数都是奇数,所有就可以想到中间是一个奇数组成的45度的正方形,其他是偶数;正好用完了所有的偶数和奇数;

#include <bits/stdc++.h>
#define pr(x) cout << #x << "= " << x << "  "
#define pl(x) cout << #x << "= " << x << endl;
#define Memset(x, a) memset(x, a, sizeof(x))
#define ll __int64
using  namespace  std;

template<class T> void read(T&num) {
    char CH; bool F=false;
    for(CH=getchar();CH<'0'||CH>'9';F= CH=='-',CH=getchar());
    for(num=0;CH>='0'&&CH<='9';num=num*10+CH-'0',CH=getchar());
    F && (num=-num);
}
int stk[70], tp;
template<class T> inline void print(T p) {
    if(!p) { puts("0"); return; }
    while(p) stk[++ tp] = p%10, p/=10;
    while(tp) putchar(stk[tp--] + '0');
    putchar('\n');
}

const ll mod=1e9+7;
const double pi=acos(-1.0);
const int inf=0x3f3f3f3f;
//const ll inf= 0x3f3f3f3f3f3f3f3fLL;
const int N=3e5+10;
const int maxn=1e3+20;
const double eps=1e-12;

int n;
int ans[50][50];

int  main(){
  std::ios::sync_with_stdio(false);
  std::cin.tie(0);

  read(n);
  int c1=1,c2=2,cx=n/2+1,cy=n/2+1;  //cx,cy是中心点横纵坐标
  for(int i=1; i<=n; i++){
    for(int j=1; j<=n; j++){
      if(abs(cx-i)+abs(cy-j)<=n/2)ans[i][j]=c1,c1+=2;  //判断的式子画出的图形组成一个45度的正方形
      else ans[i][j]=c2,c2+=2;
    }
  }
  for(int i=1; i<=n; i++){
    for(int j=1; j<n; j++)
      cout<<ans[i][j]<<" ";
    cout<<ans[i][n]<<"\n";
  }
  return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值