高斯消元模板

借鉴bin神的模板~

1.高斯消元(判断方程类型)

#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cmath>
using namespace std;

const int MAXN=50;



int a[MAXN][MAXN];//增广矩阵
int x[MAXN];//解集
bool free_x[MAXN];//标记是否是不确定的变元



/*
void Debug(void)
{
    int i, j;
    for (i = 0; i < equ; i++)
    {
        for (j = 0; j < var + 1; j++)
        {
            cout << a[i][j] << " ";
        }
        cout << endl;
    }
    cout << endl;
}
*/


inline int gcd(int a,int b)
{
    int t;
    while(b!=0)
    {
        t=b;
        b=a%b;
        a=t;
    }
    return a;
}
inline int lcm(int a,int b)
{
    return a/gcd(a,b)*b;//先除后乘防溢出
}

// 高斯消元法解方程组(Gauss-Jordan elimination).(-2表示有浮点数解,但无整数解,
//-1表示无解,0表示唯一解,大于0表示无穷解,并返回自由变元的个数)
//有equ个方程,var个变元。增广矩阵行数为equ,分别为0到equ-1,列数为var+1,分别为0到var.
int Gauss(int equ,int var)
{
    int i,j,k;
    int max_r;// 当前这列绝对值最大的行.
    int col;//当前处理的列
    int ta,tb;
    int LCM;
    int temp;
    int free_x_num;
    int free_index;

    for(int i=0;i<=var;i++)
    {
        x[i]=0;
        free_x[i]=true;
    }

    //转换为阶梯阵.
    col=0; // 当前处理的列
    for(k = 0;k < equ && col < var;k++,col++)
    {// 枚举当前处理的行.
// 找到该col列元素绝对值最大的那行与第k行交换.(为了在除法时减小误差)
        max_r=k;
        for(i=k+1;i<equ;i++)
        {
            if(abs(a[i][col])>abs(a[max_r][col])) max_r=i;
        }
        if(max_r!=k)
        {// 与第k行交换.
            for(j=k;j<var+1;j++) swap(a[k][j],a[max_r][j]);
        }
        if(a[k][col]==0)
        {// 说明该col列第k行以下全是0了,则处理当前行的下一列.
            k--;
            continue;
        }
        for(i=k+1;i<equ;i++)
        {// 枚举要删去的行.
            if(a[i][col]!=0)
            {
                LCM = lcm(abs(a[i][col]),abs(a[k][col]));
                ta = LCM/abs(a[i][col]);
                tb = LCM/abs(a[k][col]);
                if(a[i][col]*a[k][col]<0)tb=-tb;//异号的情况是相加
                for(j=col;j<var+1;j++)
                {
                    a[i][j] = a[i][j]*ta-a[k][j]*tb;
                }
            }
        }
    }

  //  Debug();

    // 1. 无解的情况: 化简的增广阵中存在(0, 0, ..., a)这样的行(a != 0).
    for (i = k; i < equ; i++)
    { // 对于无穷解来说,如果要判断哪些是自由变元,那么初等行变换中的交换就会影响,则要记录交换.
        if (a[i][col] != 0) return -1;
    }
    // 2. 无穷解的情况: 在var * (var + 1)的增广阵中出现(0, 0, ..., 0)这样的行,即说明没有形成严格的上三角阵.
    // 且出现的行数即为自由变元的个数.
    if (k < var)
    {
        // 首先,自由变元有var - k个,即不确定的变元至少有var - k个.
        for (i = k - 1; i >= 0; i--)
        {
            // 第i行一定不会是(0, 0, ..., 0)的情况,因为这样的行是在第k行到第equ行.
            // 同样,第i行一定不会是(0, 0, ..., a), a != 0的情况,这样的无解的.
            free_x_num = 0; // 用于判断该行中的不确定的变元的个数,如果超过1个,则无法求解,它们仍然为不确定的变元.
            for (j = 0; j < var; j++)
            {
                if (a[i][j] != 0 && free_x[j]) free_x_num++, free_index = j;
            }
            if (free_x_num > 1) continue; // 无法求解出确定的变元.
            // 说明就只有一个不确定的变元free_index,那么可以求解出该变元,且该变元是确定的.
            temp = a[i][var];
            for (j = 0; j < var; j++)
            {
                if (a[i][j] != 0 && j != free_index) temp -= a[i][j] * x[j];
            }
            x[free_index] = temp / a[i][free_index]; // 求出该变元.
            free_x[free_index] = 0; // 该变元是确定的.
        }
        return var - k; // 自由变元有var - k个.
    }
    // 3. 唯一解的情况: 在var * (var + 1)的增广阵中形成严格的上三角阵.
    // 计算出Xn-1, Xn-2 ... X0.
    for (i = var - 1; i >= 0; i--)
    {
        temp = a[i][var];
        for (j = i + 1; j < var; j++)
        {
            if (a[i][j] != 0) temp -= a[i][j] * x[j];
        }
        if (temp % a[i][i] != 0) return -2; // 说明有浮点数解,但无整数解.
        x[i] = temp / a[i][i];
    }
    return 0;
}
int main(void)
{
//    freopen("in.txt", "r", stdin);
//    freopen("out.txt","w",stdout);
    int i, j;
    int equ,var;
    while (scanf("%d %d", &equ, &var) != EOF)
    {
        memset(a, 0, sizeof(a));
        for (i = 0; i < equ; i++)
        {
            for (j = 0; j < var + 1; j++)
            {
                scanf("%d", &a[i][j]);
            }
        }
//        Debug();
        int free_num = Gauss(equ,var);
        if (free_num == -1) printf("无解!\n");
   else if (free_num == -2) printf("有浮点数解,无整数解!\n");
        else if (free_num > 0)
        {
            printf("无穷多解! 自由变元个数为%d\n", free_num);
            for (i = 0; i < var; i++)
            {
                if (free_x[i]) printf("x%d 是不确定的\n", i + 1);
                else printf("x%d: %d\n", i + 1, x[i]);
            }
        }
        else
        {
            for (i = 0; i < var; i++)
            {
                printf("x%d: %d\n", i + 1, x[i]);
            }
        }
        printf("\n");
    }
    return 0;
}

2.高斯消元(浮点数)
#define eps 1e-9
const int maxn=220;
double a[maxn][maxn],x[maxn];//方程的左边的矩阵和等式右边的值,求解之后x存的就是结果
int equ,var;//方程数和未知数个数
/*
 *返回0表示无解,1表示有解
 */
int Gauss(){
  int i,j,k,col,max_r;
  for(k=0,col=0; k<equ&&col<var; k++,col++){
    max_r=k;
    for(i=k+1; i<equ; i++)
      if(fabs(a[i][col])>fabs(a[max_r][col]))
        max_r=i;
    if(fabs(a[max_r][col])<eps)return 0;
    if(k!=max_r){
      for(j=col; j<var; j++)
        swap(a[k][j],a[max_r][j]);
      swap(x[k],x[max_r]);
    }
    x[k]/=a[k][col];
    for(j=col+1; j<var; j++)a[k][j]/=a[k][col];
      a[k][col]=1;
    for(i=0; i<equ; i++)
      if(i!=k){
        x[i]-=x[k]*a[i][k];
        for(j=col+1; j<var; j++)a[i][j]-=a[k][j]*a[i][col];
          a[i][col]=0;
      }
  }
  return 1;
}

3.高斯消元法求方程组的解 

复杂度O(n^3)

一类开关问题,对 2 取模的 01 方程组 
POJ 1681 需要枚举自由变元,找解中 1 个数最少的

//对2取模的01方程组
const int maxn = 300;
//有equ个方程,var个变元。增广矩阵行数为equ,列数为var+1,分别为0到var
int equ,var;
int a[maxn][maxn]; //增广矩阵
int x[maxn]; //解集
int free_x[maxn];//用来存储自由变元(多解枚举自由变元可以使用)
int free_num;//自由变元的个数

//返回值为-1表示无解,为0是唯一解,否则返回自由变元个数
int Gauss(){
  int max_r,col,k;
  free_num = 0;
  for(k = 0, col = 0 ; k < equ && col < var ; k++, col++){
    max_r = k;
    for(int i = k+1;i < equ;i++){
      if(abs(a[i][col]) > abs(a[max_r][col]))
        max_r = i;
    }
    if(a[max_r][col] == 0){
      k--;
      free_x[free_num++] = col;//这个是自由变元
      continue;
    }
    if(max_r != k){
      for(int j = col; j < var+1; j++)
        swap(a[k][j],a[max_r][j]);
    }
    for(int i = k+1;i < equ;i++){
      if(a[i][col] != 0){
        for(int j = col;j < var+1;j++)
          a[i][j] ^= a[k][j];
      }
    }
  }
  for(int i = k;i < equ;i++)
    if(a[i][col] != 0)
      return -1;//无解
  if(k < var) return var-k;//自由变元个数
  //唯一解,回代
  for(int i = var-1; i >= 0;i--){
    x[i] = a[i][var];
    for(int j = i+1;j < var;j++)
      x[i] ^= (a[i][j] && x[j]);
  }
  return 0;
}

int n;
void init(){
  memset(a,0,sizeof(a));
  memset(x,0,sizeof(x));
  equ = n*n;
  var = n*n;
  for(int i = 0;i < n;i++)
    for(int j = 0;j < n;j++){
      int t = i*n+j;
      a[t][t] = 1;
      if(i > 0)a[(i-1)*n+j][t] = 1;
      if(i < n-1)a[(i+1)*n+j][t] = 1;
      if(j > 0)a[i*n+j-1][t] = 1;
      if(j < n-1)a[i*n+j+1][t] = 1;
    }
}

void solve(){
  int t = Gauss();
  if(t == -1){
    printf("inf\n");
    return;
  }
  else if(t == 0){
    int ans = 0;
    for(int i = 0;i < n*n;i++)
      ans += x[i];
    printf("%d\n",ans);
    return;
  }
  else{
    //枚举自由变元
    int ans = 0x3f3f3f3f;
    int tot = (1<<t);
    for(int i = 0;i < tot;i++){
      int cnt = 0;
      for(int j = 0;j < t;j++){
        if(i&(1<<j)){
          x[free_x[j]] = 1;
          cnt++;
        }
        else x[free_x[j]] = 0;
      }
      for(int j = var-t-1;j >= 0;j--){
        int idx;
        for(idx = j;idx < var;idx++)
          if(a[j][idx])
            break;
        x[idx] = a[j][var];
        for(int l = idx+1;l < var;l++)
          if(a[j][l])
            x[idx] ^= x[l];
            cnt += x[idx];
      }
      ans = min(ans,cnt);
    }
    printf("%d\n",ans);
  }
}

char str[30][30];
int main(){
  //freopen("in.txt","r",stdin);
  //freopen("out.txt","w",stdout);
  int T;
  scanf("%d",&T);
  while(T--){
    scanf("%d",&n);
    init();
    for(int i = 0;i < n;i++){
      scanf("%s",str[i]);
      for(int j = 0;j < n;j++){
        if(str[i][j] == 'y')
          a[i*n+j][n*n] = 0;
        else a[i*n+j][n*n] = 1;
      }
    }
    solve();
  }
  return 0;
}

4.高斯消元(异或版)
//m个方程,n个变量,返回矩阵的秩(有界变量的个数)
int Rank(int A[][maxn],int m,int n){//异或版的高斯消元求秩
  int i=0,j=0,k,r,u;
  while(i<=m && j<=n){
    r=i;
    while(A[r][j]==0 && r<=m)r++;//当前正在处理第i个方程,第j个变量
    if(A[r][j]){
      swap(A[i], A[r]);
      //消元后第i行的第一个非0列是第j列,且第u>i行第j列均为0
      for(int u=i+1; u<=m; u++)if(A[u][j])
        for(k=i; k<=n; k++)A[u][k]^=A[i][k];
      i++;
    }
    j++;
  }
  return i;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值