【51 nod 1189】【素数+整数唯一分解定理】阶乘分数

传送们:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1189

思路:通常这种题目具有轮换对称式性,化简这个式子得(X-N!)*(Y-N!) = (N!)^2, 所以我们只需要对(N!)^2求约数即可

代码:

#include <bits/stdc++.h>
using  namespace  std;

#define ll __int64
#define mod 1000000007
const int MP=1e3+5;
const int MN=1e6+5;

int p[MP],rear, n;
bool vis[MP];
int cnt[MN];

void GetPrime(){
    for(int i=2; i<MP; i++){
        if(!vis[i]){
            p[++rear]=i;
            for(int j=2*i; j<MP; j+=i)vis[j]=1;
        }
    }
}

void func(int x){
    for(int i=1; i<=rear && 1LL*p[i]*p[i]<=x && x!=1 ; i++){
        while(x%p[i]==0){
            cnt[p[i]]++;
            x/=p[i];
        }
    }
    if(x!=1)cnt[x]++;
}

ll pow_mod(ll x, ll n){
    ll ret=1;
    while(n){
        if(n&1)ret=ret*x%mod;
        x=x*x%mod;
        n>>=1;
    }
    return ret;
}


int  main(){
    GetPrime();
    scanf("%d", &n);
    for(int i=1; i<=n; i++)func(i);
    ll ans=1;
    for(int i=2; i<MN; i++)(ans*=(2*cnt[i]+1))%=mod;
    ans=(ans+1)*pow_mod(2, mod-2)%mod;
    printf("%lld\n", ans);
    return 0;
}

描述:

题目来源:  Spoj
基准时间限制:1 秒 空间限制:131072 KB 分值: 80  难度:5级算法题
 收藏
 关注
1/N! = 1/X + 1/Y (0<x<=y),给出N,求满足条件的整数解的数量。例如:N = 2,1/2 = 1/3 + 1/6,1/2 = 1/4 + 1/4。由于数量可能很大,输出Mod 10^9 + 7。
Input
输入一个数N(1 <= N <= 1000000)。
Output
输出解的数量Mod 10^9 + 7。
Input示例
2
Output示例
2
李陶冶  (题目提供者)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值