排列与组合

排列与排列数

        定义

                 在n项中选m项不重复且有规律的排列,所有可能的方案数即为排列数permutation。

                 排列数可表示为A_{n}^{m},m\in Z,n\in Z,0\leq m\leq n

        排列数公式与推导

                公式

                         A_{n}^{m}=n(n-1)(n-2) \cdot\cdot\cdot\cdot (n-m+1)  

                         A_{n}^{m}=\frac{n!}{(n-m)!}

                        第一条用于实际计算

                        第二条用于公式证明

                推导

                        设有n个数,选m个不重复且有规律的排列,则方案数=A_{n}^{m}

                        可以将问题看成这样:

第1个位置可以从n个中选一个,有n种选择
第2个位置可以从n-1个中选一个(有1个已被选),有n-1种选择
第3个位置可以从n-2个中选一个(有2个已被选),有n-2种选择
第k个位置可以从n-k+1个中选一个(有k-1个已被选),有n-k+1种选择
第m个位置可以从n-m+1个中选一个(有m-1个已被选),有n-m+1种选择
根据乘法原理,可得总方案数=n*(n-1)*(n-2)···(n-m+1)
即:

                        A_{n}^{m}=n(n-1)(n-2) \cdot\cdot\cdot\cdot (n-m+1)

                        对其进行变形:

                                A_{n}^{m}=\frac{n(n-1)(n-2) \cdot\cdot\cdot\cdot (n-m+1)*(n-m)(n-m-1) \cdot\cdot\cdot\cdot\times 2\times 1}{(n-m)(n-m-1) \cdot\cdot\cdot\cdot\times 2\times 1}=\frac{n!}{(n-m)!}

                        即

                                A_{n}^{m}=\frac{n!}{(n-m)!}

        一些小概念

                全排列:A_{k}^{k}=k!,k\in Z,0\leq k

                阶乘:n!=1\times 2\times 3\times \cdot \cdot \cdot \times (n-1)\times n,n\in Z,0\leq n

                0的阶乘:0!=1

        注

                 部分书籍将排列数标为P_{n}^{m},同A_{n}^{m}

组合与组合数

        定义

                 在n项中选m项不重复且无规律的组合,所有可能的方案数即为组合数combination。

                 组合数可表示为C_{n}^{m},m\in Z,n\in Z,0\leq m\leq n

        排列数公式与推导

                公式

                         C_{n}^{m}=\frac{A_{n}^{m}}{A_{m}^{m}}  

                         C_{n}^{m}=\frac{n(n-1)(n-2) \cdot\cdot\cdot\cdot (n-m+1)}{m(m-1)(m-2)\cdot\cdot\cdot\cdot \times 2\times 1}

                         C_{n}^{m}=\frac{n!}{m!(n-m)!}

                         第一,三条用于公式证明

                         第二条用于实际计算

                推导

                        设有n个数,选m个不重复且无规律的组合,则方案数=C_{n}^{m}

                        可以将问题看成这样:

Step 1:排列
得出其排列数
Step 2:去重
重复次数等于m的全排列,用Step 1结果除Step 2结果
即:

                        C_{n}^{m}=\frac{A_{n}^{m}}{A_{m}^{m}}

                        对其进行变形:

                ​​​​​​​        ​​​​​​​        C_{n}^{m}=\frac{\frac{n!}{(n-m)!}}{ m !}=\frac{n!}{m!(n-m)!}

                        即

        ​​​​​​​        ​​​​​​​                C_{n}^{m}=\frac{n(n-1)(n-2) \cdot\cdot\cdot\cdot (n-m+1)}{m(m-1)(m-2)\cdot\cdot\cdot\cdot \times 2\times 1}

        组合数运算公式与证明

                        C_{n}^{m}=C_{n}^{n-m}

                        证明:C_{n}^{n-m}=\frac{n!}{(n-m)![n-(n-m)]!}=\frac{n!}{(n-m)!m!}=C_{n}^{m}

                        作用:简便计算

                        C_{n}^{m}+C_{n}^{m-1}=C_{n+1}^{m}

                        证明:略

                        作用:合并组合数

文章制作不易,给个赞,不过分吧

  • 59
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值