数学基础知识-排列与组合


前言

排列和组合是组合学基本概念。
难学只是因为概念上比较难理解,没有对排列和组合形成的实体感受。
做个小实验:
1个盒子,盒子里放置4个带编号球,一定是带编号的球。
什么是排列,在盒子依次取出2个球的不同结果共有12种。

A 4 2 = 4 ! ( 4 − 2 ) ! = 4 ∗ 3 ∗ 2 ∗ 1 2 ∗ 1 = 12 A_4^2=\frac {4!}{(4-2)!}=\frac {4*3*2*1}{2*1}=12 A42=(42)!4!=214321=12
什么是组合,在盒子依次取出2个球的不同结果组合共有6种。

C 4 2 = A 4 2 A 4 4 = 4 ! ( 4 − 2 ) ! 2 ! = 4 ! ( 4 − 2 ) ! 2 ! = 4 ∗ 3 ∗ 2 ∗ 1 2 ∗ 1 ∗ 2 ∗ 1 = 6 C_4^2=\frac {A_4^2}{A_4^4}=\frac {\frac {4!}{(4-2)!}} {{2!}}=\frac {4!}{(4-2)!2!}=\frac {4*3*2*1}{2*1*2*1}=6 C42=A44A42=2!(42)!4!=(42)!2!4!=21214321=6

单学排列,单学组合都不难,但是因为两者数学概念定义严谨复杂,大家搞不懂概念,很难学。
我有一个简单方法动手做实验,买些兵乓球
先介绍分类相乘原理——介绍排列定义——用分步相乘原理理解排列——通过排列理解分组。

一、分步乘法原理

1.定义

定义:做一件事,完成它需要n个步骤,在第1步骤中有m1种的方法;第2步骤中有m2种不同的方法…第m步骤中mn种不同的方法,那么完成这件事情共有m1xm2x…xmn种不同方法。
方法总数 = 每一步骤的方法数的积 = m 1 ∗ m 2 ∗ . . . m n 方法总数=每一步骤的方法数的积=m_1*m_2*...m_n 方法总数=每一步骤的方法数的积=m1m2...mn

2.举例

举例:从广州出发要经过中转站上海再去北京。
要完成这件事,有两个步骤
第一步骤:从广州坐动车去上海;从广州坐火车去上海;从广州坐飞机去上海(共3种方法)
第二步骤:从上海坐动车去北京;从上海坐飞机去北京(共2种方法)
按照分步乘法原则,要完成这件事,有2*3=6种方法。

坐动车
坐火车
坐飞机
坐动车
坐飞机
广州
上海
北京

二、排列

1.定义

从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。简单来说,

从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记做
A n m A_n^m Anm

2.计算公式

A n m = n ! ( n − m ) ! A_n^m=\frac {n!}{(n-m)!} Anm=(nm)!n!

3.举例分析

问题:盒子里有3个球分别标上a,b,c号,现在依次取出2个球组成排列,请问有多少种排列?
穷举法:
(a,b)(a,c)
(b,a)(b,c)
(c,a)(c,a)
注意是依次
按照分步骤完成这件事情:
第1步骤:盒子有3个球,抽取出1个球,有3种情况。
第2步骤:现在盒子有2个球,抽取出1个球有2种情况。
根据分步相乘原理:3x2=6
A 3 2 = 3 ∗ 2 = 6 A_3^2=3*2=6 A32=32=6

4.公式推导过程

按照定义,排列数是等于从n到n-(m-1)之间所有数相乘的积(共有m项)。
所以有公式一(乘数版):
A n m = n ∗ ( n − 1 ) ( n − 2 ) . . . ( n − ( m − 1 ) ) A_n^m=n*(n-1)(n-2)...{(n-(m-1))} Anm=n(n1)(n2)...(n(m1))
实际上,我们对于计算一些简单A(6,2)、A(5,4)这些乘数项数很少的排列数直接使用定义就是公式一:
A 6 2 = 6 ∗ 5 = 30 A_6^2=6*5=30 A62=65=30
A 5 4 = 5 ∗ 4 ∗ 3 ∗ 2 = 120 A_{5}^4=5*4*3*2=120 A54=5432=120

但是排列数计算数字很大就需要用阶乘版计算公式,这是我们常用的公式。(科学计算器上阶乘运算,大的数直接可以摁计算器来计算)


阶乘定义,从1相乘到n的积就是n的阶乘。如:
3!=3x2x1=6;
4!=4x3x2x1=24;
公式是n!=n*(n-1)*…*1。


我们通过排列数公式一(乘数版),推导排列数公式二(阶乘版):

第一步把最后一项括号去掉:(n-(m-1))=(n-m+1))
A n m = n ∗ ( n − 1 ) . . . ( n − ( m − 1 ) ) = n ∗ ( n − 1 ) . . . ( n − m + 1 ) ) A_n^m=n*(n-1)...{(n-(m-1))}= n*(n-1)...(n-m+1)) Anm=n(n1)...(n(m1))=n(n1)...(nm+1))
第二步:分子分母都乘上(n-m)!
分子被凑成n!
即n*(n-1)…(n-m+1)(n-m)…1=n!

这样我们就推导出公式二(阶乘版):

A n m = n ∗ ( n − 1 ) . . . ( n − m + 1 ) ( n − m ) . . . 1 ( n − m ) . . . 1 = n ! ( n − m ) ! A_n^m=\frac {n*(n-1)...(n-m+1)(n-m)...1}{(n-m)...1}= \frac {n!}{(n-m)!} Anm=(nm)...1n(n1)...(nm+1)(nm)...1=(nm)!n!

三、组合

1.定义

组合(combination):从n个不同元素中每次取出m个不同元素(0≤m≤n),不管其顺序合成一组,称为从n个元素中不重复地选取m个元素的一个组合。所有这样的组合的总数称为组合数,

2.计算公式

C n m = A n m A m m = n ! ( n − m ) ! m ! = n ! ( n − m ) ! m ! C_n^m=\frac {A_n^m}{A_m^m}=\frac {\frac {n!}{(n-m)!}} {{m!}}=\frac {n!}{(n-m)!m!} Cnm=AmmAnm=m!(nm)!n!=(nm)!m!n!

3.举例分析

盒子有3个球:A、B、C,取出2个球有多少种组合方法。
穷举法:
AB AC BC 共三种组合
组合的有多少种方法怎么理解。虽然可以举例,但是想要直接把内在原理说清楚,做不到,这里可以用组合的公式借助排列来倒推理解。
C n m = A n m A m m C_n^m=\frac {A_n^m}{A_m^m} Cnm=AmmAnm
假如取2个球按照1个个来取,那么
A 3 2 = 3 ∗ 2 A_3^2=3*2 A32=32
结果是AB AC BA BC CA CB 六种方法
按照组合的概念,不按顺序,那么AB和BA、AC和CA、CB和BC两两相同。
就是抽取出来6种方法,实际上结果是进行两两排列。
A 2 2 = 2 ∗ 1 = 2 A_2^2=2*1=2 A22=21=2
那么我们理解:求组合我们找到他们的排列6种方法,但是组合不按顺序,我们去掉不按顺序,去掉重复,用除法,除以2个球排列方法数。
C 3 2 = A 3 2 A 2 2 = 3 ∗ 2 2 = 3 C_3^2=\frac {A_3^2}{A_2^2}=\frac {3*2}{2}=3 C32=A22A32=232=3
这个理解很难,但是多演练就是慢慢明白。
比如:盒子4个球:ABCD,抽取2个,有多少种组合?
结果是:
AB AC AD
BC BD
CD
C 4 2 = A 4 2 A 2 2 = 4 ∗ 3 2 = 6 C_4^2=\frac {A_4^2}{A_2^2}=\frac {4*3}{2}=6 C42=A22A42=243=6
比如:盒子5个球:ABCDE,抽取3个,有多少种组合?
结果是:
AB AC AD AE
BC BD BE
CD CE
DE
C 5 3 = A 5 3 A 3 3 = 5 ∗ 4 ∗ 3 3 ∗ 2 = 10 C_5^3=\frac {A_5^3}{A_3^3}=\frac {5*4*3}{3*2}=10 C53=A33A53=32543=10

4.其他一些规定和转换

我们规定了
C n 0 = 1 C_n^0=1 Cn0=1
组合公式推导公式
C n m = C n n − m C_n^m=C_n^{n-m} Cnm=Cnnm
怎么理解,盒子3个球,抽取2个的组合方法数,倒过来思考是不是等同于3个球留1个的组合方法。想不通就硬想,接不了就硬接。
C 3 2 = C 3 1 C_3^2=C_3^1 C32=C31


总结

我在看python的hash()函数不太明白,找了数据结构书来看,然后又看到哈希表建立的思想描述,提到哈希表大小怎么测算,用到了组合思想,特此把排列这块知识也学了一遍。
第一次写太详细也太复杂,现在删掉一部分内容,删掉了分类相加原理解释,不展开排列组合的分堆问题,也删掉排列公式一如何记忆技巧。

  • 0
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
预科数学基础教程 作者:许涓 主编 出版时间:2012年版 内容简介   《预科数学基础教程》具备以下特点:(一)汉字认读与数学语言的结合对于汉语基础较差,至多在中国仅仅接受过一个学期的汉语强化教学(约650学时)的预科生来说,对以汉语表述的数学上的很多专业词汇和常用语往往不知其音;或知其音,不知其意;或一知半解;所以必须让汉字教学和数学知识教学同时进行。在本书的每一节中,我们设计了“认一认”部分,专门用拼音和英文同时标注数学生词,以减少阅读和学习障碍,这是预科数学教学中不可缺少的一个环节。由于汉语数学表达的特殊性,预科生的阅读水平也是学习中国数学的一个拦路虎。为此,本教材专设“读一读”部分,使预科生能尽快适应中国数学语言的特点。(二)直观图形与数学知识的结合大多数留学生在本国都接触过相当于中国的初高中水准的数学课程,但以高考为代表的中国考试体系非常地严谨,而大部分预科生的数学水准很难达到中国的高中毕业生的水平,他们原有的数学知识往往需要一定的补缺、提升,才能与中国高中程度的数学知识接轨。在本书的“学一学”部分,我们针对预科生既有语言障碍,又有知识缺口的情况,力图通过大量图形的直观展示,先使这些图形尽快和学生头脑中已有的数学知识相衔接,再通过老师的汉语讲解、补充与提升,在学生脑海中逐渐输入“中国版本”的数学知识;最后,在“练一练”部分安排相当数量的练习来考察学生的数学汉字识别和数学运算以及相应的理解能力,以巩固新学到的“中国数学”知识。(三)浅入深出,注重启发我们的教材从识数开始,以集合作纽带,把学生逐步带到五大基本函数中去,为高等数学的学习做好循序渐进的铺垫。考虑到来自不同国家的留学生的数学基础的差异,在每一节的最后设“想一想”,引导那些基础好的同学深入思考“中国数学”问题,以便尽快地融入到以后的大学学习中去,能够和中国学生一起无障碍地学习高等数学和其他的相关科目。 目录 第一章 数及其运算 1.1 数的概念 1.1.1 数 1.1.2 自然数 1.1.3 整数 1.1.4 分数和倒数 1.1.5 有理数 1.2 数的运算 1.2.1 数的四则运算 1.2.2 数的方根 1.3 无理数与实数 第二章 方程与函数 2.1 整式及其运算 2.2 方程 2.3 点的坐标 2.3.1 坐标系 2.3.2 点的对称性 2.4 一次函数 2.5 二次函数 第三章 集合与不等式 3.1 集合 3.1.1 集合与元素 3.1.2 集合的分类 3.1.3 区间 3.1.4 集合的关系 3.2 不等式 3.2.1 一元一次不等式 3.2.2 一元二次不等式 3.3 分式与根式不等式 第四章 函数及其性质 4.1 函数的定义 4.2 函数的性质 4.2.1 函数的单调性 4.2.2 函数的奇偶性 4.3 幂函数 4.4 指数函数 4.5 对数函数 4.5.1 对数及其运算 4.5.2 对数函数及其性质 第五章 三角函数 5.1 三角函数值 5.1.1 角 5.1.2 弧度制 5.1.3 三角形 5.1.4 三角函数值 5.2 诱导公式 5.3 和、差、积公式 5.4 三角函数与反三角函数 5.5 复合函数与初等函数 第六章 几何理论 6.1 直线及其方程 6.2 圆与切线 6.3 椭圆、双曲线和抛物线 6.4 向量及其运算 第七章 数列及排列数 7.1 数列 7.1.1 数列的概念 7.1.2 等差数列 7.1.3 等比数列 7.2 排列组合 7.2.1 排列数、组合数 7.2.2 二项式 附录 几何图形

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值