矢量csun

目录

定义

        矢量相关表示

矢量运算

        矢标运算

        矢量的加/减法

矢量的点积

矢量的叉积

三矢量的混合积

坐标表示


定义

        矢量,即有大小和方向的量(一阶张量)。

        与其对应的,

        标量,即只有大小的量(零阶张量)。

        矢量相关表示

                矢量:\vec{a}

                矢量的模:|\vec{a}|=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdot \cdot \cdot +x_{n}^{2}}

                矢量的坐标表示:\vec{a}=(x_1,x_2,\cdot \cdot \cdot ,x_n)(坐标表示)

矢量运算

矢标运算

        矢量和标量之间只能做乘除法,不能做加减法。矢量和标量相乘,只需要矢量的每个分量和标量相乘即可,而矢量除以标量,相当于乘以标量的倒数。
演示icon-default.png?t=N7T8https://www.desmos.com/geometry/idkdywljzp

        从几何意义来看,矢量乘以一个正标量k,相当于将矢量扩大了k倍,方向不变;而乘以一个负标量,矢量不仅扩大了|k|倍,方向也会取反。

矢矢运算
矢量的加/减法

两个矢量相加减,只需要将每个矢量的对应分量相加减即可,最后的结果是得到一个新矢量。

演示icon-default.png?t=N7T8https://www.desmos.com/geometry/grwzpgrugm矢量的加减法,它表达的是偏移的几何意义。

以加法为例,矢量a + 矢量b,它表示的是:一个点,从a的起始位置出发,便偏移了a,接着又偏移了b,就等同于进行了一个a+b的位移。这里的矢量a、b,它们的首尾是相连的。

如果a、b首尾不相连,就变成了减法,a-b,表示的是a相对于b的偏移。

矢量的点积

矢量之间也可以进行乘法,通常有两种类型:点积和叉积。先来说说点积。

矢量的点积有两种公式,第一种是矢量之间对应分量的乘积之和,也就是:

\vec{a}\cdot \vec{b}=|\vec{a}||\vec{b}|cos\left \langle a,b \right \rangle

从公式可以看出,点积是满足乘法交换律的,也就是a*b = b*a

点积可以用来判断两个矢量之间的方向夹角关系。

如果 a * b > 0,说明a和b是锐角关系;

如果 a * b = 0,说明a和b是直角关系;

如果 a * b < 0,说明a和b是钝角关系;

在游戏编程中,也通常使用点积来计算投影,这和求矢量方向夹角是同一个道理。

演示icon-default.png?t=N7T8https://www.desmos.com/calculator/tf3lylcz95

另外,点积可以和标量进行乘法运算,并且符合乘法的结合律

点积还可以结合矢量加法做运算,相当于求点积之和。

一个矢量和本身进行点积,结果是这个矢量模的平方。

这里有说到矢量的模,它的求法等于矢量各分量的平方和开根号,即:

另外,模为1的矢量,被称为单位矢量,也叫做归一化矢量

矢量的第二种公式是:

\vec{a}=(x_1,y_1),\vec{b}=(x_2,y_2)

\vec{a}\cdot \vec{b}=x_1x_2+y_1y_2

矢量的叉积

矢量的另一种乘法运算叫做叉积,和点积不同的是,叉积的结果仍然是一个矢量,而非标量。

演示icon-default.png?t=N7T8https://www.desmos.com/3d/limzqupbwt

两个矢量的叉积用a X b来表示,这个x号不同于数学的乘号,这点不要混淆。叉积计算也有两种公式,第一种是:

\vec{a}\times \vec{b}=(a_x,a_y,a_z)\times(b_x,b_y,b_z)

叉积不满足交换律,即 a X b ≠ b X a,但它满足反交换律,即a X b = -( b X a)

叉积也不满足结合律,即 (a X b) X c ≠ a X (b X c)

从几何意义来讲,两个矢量叉积的结果,会得到一个同时垂直于这两个矢量的新矢量,这个新矢量的模很好计算,既可以通过模公式来得到,也可以通过矢量a、b以及他们之间的夹角θ来得到

|\vec{a}\times\vec{b}|=|\vec{a}||\vec{b}|sin\left \langle\vec{a},\vec{b} \right \rangle

对于新矢量的方向,它可能存在两个完全相反的方向,要确定具体哪个方向,就要看使用的左手坐标系还是右手坐标系。

要求a X b 新矢量的方向,如果是左手坐标系,伸直左手拇指微握其他四指,指背与矢量a方向垂直,四指弯曲方向朝矢量b靠拢,这是拇指指向的方向,就是新矢量的方向。

同样地,如果是右手坐标系,则伸出右手按照同样的法则来判断方向。

三矢量的混合积

定义:给定空间三矢量a、b、c,矢量a、b的矢量积a×b,再和矢量c作数量积(a×b)·c,

矢量的混合积所得的数叫做三矢量a、b、c的混合积,记作(a,b,c)或(abc),即

(a,b,c)=(abc)=(\vec{a}\times \vec{b})\cdot \vec{c}

坐标表示

存在互相垂直的n个模为一的矢量为\vec{p_1},\vec{p_2},\cdot \cdot \cdot \vec{p_n}\vec{a},若存在一组唯一的x_1,x_2,\cdot \cdot \cdot, x_n使\vec{a}=x_1\vec{p_1}+x_2\vec{p_2}+\cdot \cdot \cdot +x_n\vec{p_n},则\vec{a}的坐标表示为(x_1,x_2,\cdot \cdot \cdot ,x_n),记作\vec{a}=(x_1,x_2,\cdot \cdot \cdot ,x_n)

  • 29
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值