Seaborn 给子图添加大标题

plt.suptitle('n=1600') #在plt.show()前加这一行
plt.show()
Seaborn是一个基于matplotlib的Python可视化库,它提供了一些高级接口,可以让我们更加方便地绘制统计表。而绘制则是在一个的画布中绘制多个小的表,以便于对比和分析数据。 在Seaborn中,我们可以使用FacetGrid类来绘制。FacetGrid类可以根据数据集中的某些变量来创建网格,并在每个网格中绘制一个小的表。下面是一个简单的例: ```python import seaborn as sns import matplotlib.pyplot as plt # 加载数据集 tips = sns.load_dataset("tips") # 创建FacetGrid对象 g = sns.FacetGrid(tips, col="time", row="smoker") # 在每个网格中绘制小的表 g.map(sns.scatterplot, "total_bill", "tip") # 显示表 plt.show() ``` 在这个例中,我们加载了一个名为"tips"的数据集,并使用FacetGrid类创建了一个网格,其中行表示"smoker"变量的不同取值,列表示"time"变量的不同取值。然后我们使用map()方法在每个网格中绘制了一个散点。 如果我们想要在每个网格中绘制不同类型的表,可以使用map()方法的第一个参数来指定不同的绘函数。例如,下面的代码将在每个网格中绘制一个直方和一个核密度估计: ```python import seaborn as sns import matplotlib.pyplot as plt # 加载数据集 tips = sns.load_dataset("tips") # 创建FacetGrid对象 g = sns.FacetGrid(tips, col="time", row="smoker") # 在每个网格中绘制直方和核密度估计 g.map(sns.histplot, "total_bill") g.map(sns.kdeplot, "tip") # 显示表 plt.show() ``` 在这个例中,我们使用了两个不同的绘函数histplot()和kdeplot(),分别绘制了直方和核密度估计。注意,我们可以使用多个map()方法来在同一个网格中绘制多个表。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值