论文:《ML-MG Multi-label Learning with Missing Labels Using a Mixed Graph》代码实现

实验结果:
    因为训练集中缺失标签是随机的,我只对测试集进行了结果评判。在不加语义约束的情况下,AP率最高为0.16以上,加语义约束的情况下,AP率最高为0.3以上

遇到的问题:
(1)AP率比较低,在不同缺失比例下,不加语义约束时,论文中的AP率为0.3到0.4左右,而我的代码在不加语义约束的情况下仅为0.16左右
(2)论文中的AP率最高也仅为0.5左右,而当我把所有标签都视为负标签的时候,AP率就能达到0.5 ( 即相当于随机猜测 ),所以我对本论文工作的意义有些疑惑

项目地址:
    https://github.com/CoderZWei/Multi-label
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值