模式识别-从贝叶斯决策理论看模式分类

本文探讨了模式识别中的贝叶斯决策理论,包括最小错误率决策、最小风险决策和带拒识的决策。通过收集训练样本估计类条件概率密度和类先验概率,构建贝叶斯分类器。最小错误率决策强调减少错误率,最小风险决策引入决策代价,而带拒识的决策允许在某些情况下避免决策以降低风险。
摘要由CSDN通过智能技术生成

模式识别中的贝叶斯决策理论

理论路线

一图分解模式识别中的贝叶斯决策理论

难点解析

话不多说,我们先梳理一下贝叶斯模式分类的基本流程:

  • 收集训练样本
  • 用每一类的样本估计类条件概率密度 p ( x ∣ w i ) p(x|w_i) p(xwi)
  • 估计类先验概率 p ( w i ) p(w_i) p(wi)
  • 得到模型参数集 { p ( x ∣ w i , θ i ) , p ( w i ) , i = 1 , . . . , M p(x|w_i,\theta_i),p(w_i),i=1,...,M p(xwi,θi),p(wi),i=1,...,M}

有这个比较确定的流程后,大家对贝叶斯决策就有了大致的印象。我们最终的目的是为了获取贝叶斯分类器,那么我们先从我们的最终目的讲起,然后再往前讲述如何获取分类器。

贝叶斯分类器

如本文开始的理论路线图,贝叶斯决策主要有两个路线,一个是根据最小错误率决策,另一个是根据最小风险决策,在风险决策的基础上,还有一个带拒识的最小风险决策。下面我们分别来讲解三个决策方法。

最小错误率决策

让我们先举一个简单例子,假如我们要做一个贝叶斯分类器,预测本文的下一个浏览者是男是女。假设我们没有使用任何信息获取的手段,单纯本人现有的背景知识(本文的背景是工科知识,而本人工科院校中男女比多为2:8),则应该有如下先验概率 p ( w 1 = w o m a n ) = 0.2 {p(w_1=woman)=0.2} p(w1=woman)=0.2, p ( w 2 = m a n ) = 0.8 {p(w_2=man)=0.8} p(w2=man)=0.8。有了这样的背景知识,我们可以分析如下:
p ( e r r o r ) = { p ( w 2 ) c h o o s e w o m a n p ( w 1 )

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值