模式识别—贝叶斯决策理论

绪论

模式的两个层次:样本、类别

模式的表示:两个

识别对象的表示:选择特征来对所识别的对象进行表示,特征选择的好坏对识别对象的难度有很大影响。

每个对象可选择多个特征来表示,这些特征用一个特征向量来表示,特征向量所在的空间为特征空间(线性空间、欧式空间)

分类器的表示

类别模型:

判别模型:

决策面:分类面、

特征空间

特征空间
每个样本都是特征空间中的一个点,容易计算样本之间的距离/也叫做相似度

欧式空间的特性:坐标系不变性(什么意思?)

符合三角定理:三个点形成一个三角形,边为两点之间的距离,两边之和大于第三边

特征空间中的分类: 利用决策面将特征空间进行划分,每一个子空间代表一个类别。

泛化性能: 利用训练数据集训练好的模型去分类其他的样本,分类的正确率高说明泛化性好。也就是这个模型的性能不依赖于训练样本。

第二章 贝叶斯决策理论

统计学习识别方法

1.生成模型:基于概率密度估计(贝叶斯估计)

2.判别模型:基于判别函数

概率密度函数(条件概率)

P ( X ∣ ω i ) = P ( X ω i ) P ( ω i ) P(X| \omega_i) =\cfrac{P(X\omega_i) }{ P(\omega_i)} P(Xωi)=P(ωi)P(Xωi)

表示样本X在某一类别 ω i \omega_i ωi中出现的概率,该样本也可能出现在其它的类别中。叫做条件概率,就是因为是在特定类别这个条件下出现的概率。

后验概率

P ( ω i ∣ X ) = P ( X ∣ ω i ) P ( ω i ) P ( X ) = P ( X ∣ ω i ) P ( ω i ) ∑ j = 1 c P ( X ∣ ω j ) P ( ω j ) P(\omega_i|X)=\cfrac{P(X|\omega_i)P(\omega_i)}{P(X)}=\cfrac{P(X|\omega_i)P(\omega_i)}{\sum_{j=1}^cP(X|\omega_j)P(\omega_j)} P(ωiX)=P(X)P(Xωi)P(ωi)=j=1cP(Xωj)P(ωj)P(Xωi)P(ωi)

∑ i = 1 c P ( ω i ∣ X ) = 1 \sum_{i=1}^cP(\omega_i|X)=1 i=1cP(ωiX)=1

P ( X ) P(X) P(X)表示样本X在所有类别中出现的概率之和
最大

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值