自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(4)
  • 资源 (2)
  • 收藏
  • 关注

原创 模式分类--贝叶斯决策论3

分类器、判别函数及判定面下图展示了基于判别函数的分类器体系结构。给定d个特征(输入),经过结合代价函数的判定函数(最大后验概率,最小条件风险,最小误差率等),得到对应的行为(判定类别为w等)。 判定函数的形式多样: 对比大小 取对数 判定函数形式多种多样,但是规则是相同的,将特征空间划分为c个判别区域,R1、R2 ,· · · ,Rc。 判别边界即判决空间中使判别函数值最大的曲

2015-04-07 14:39:26 1432

原创 模式分类--贝叶斯决策论2

前面章节介绍了贝叶斯决策论,现在我们将其推广到多个特征、多种状态类别、更一般的损失函数行为。 首先特征标量x变为特征向量x,如果有d个特征,则称其d维欧几里得空间为特征空间(二维的欧几里得空间就是一个平面直角坐标系,三维就是一个立体)。 行为是指给定x,我们将其划分为类别w或者拒绝决策等等。最小化条件风险我们有一个观测特征x,我们要采取某一行动,这些行动是有风险(损失、代价)的。用 来表示。那么

2015-04-06 12:06:56 2647

原创 模式分类--贝叶斯决策论--引言

引言贝叶斯决策论从概率角度分析不同分类决策以及决策代价之间定量折中。 通俗点讲,把分类问题看做是概率问题,从已知的样本集中,估计一些概率值,进而估计下一次出现某个预测样本时(条件),样本属于某一类别(随机变量)的概率(后验概率)。寻找判别函数,假如决策代价相同,那么判别函数为后验概率大的类别作为预测类别。 贝叶斯公式推导过程: 联合概率密度公式: 整理后得到贝叶斯公式: 分母计算方

2015-04-05 18:11:56 924

原创 模式分类-绪论

从绪论开始吧一直想要深入的研究模式分类这本书,终于抽出时间来做了!写个博客敦促一下自己吧!由于模式分类是我第一本书,我还不是数学专业,对公式的推导证明,以及内容的理解上可能有一定的偏差。带来的错误欢迎大家指出!绪论部分通过鲑鱼和鲈鱼分类的例子向我们介绍了机器学习的基本概念以及可能遇到的问题。 - 学习过程 - 代价函数 - 拟合问题 - 学习中需要注意的事情学习过程 学习就是通

2015-04-05 13:40:50 638

IDL可视化工具入门与提高

该书是一本很好的IDL入门教程!从事IDL+envi二次开发的可以看看!书上代码很好。

2013-09-04

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除