以下是我所推荐的学习资料:
首先是视频课程。
Yaser Abu-Mostafa
加州理工的Yaser Abu-Mostafa教授出品的机器学习网络课程,非常系统地讲解了机器学习背后的原理,以及主要的技术。讲解非常深入浅出,让你不光理解机器学习有哪些技术,还能理解它们背后的思想,为什么要提出这项技术,机器学习的一些通用性问题的解决方法(比如用正则化方法解决过拟合)。强烈推荐。
课程名称:Machine Learning Course - CS 156
视频地址:https://www.youtube.com/watch?v=mbyG85GZ0PI&list=PLD63A284B7615313A
Geoffrey Hinton
深度学习最重要的研究者。也是他和另外几个人(Yann LeCun,Yoshua Bengio等)在神经网络被人工智能业界打入冷宫,进入低谷期的时候仍然不放弃研究,最终取得突破,才有了现在的深度学习热潮。
他在Coursera上有一门深度学习的课程,其权威性自不待言,但是课程制作的质量以及易于理解的程度,实际上比不上前面Yaser Mostafa的。当然,因为其实力,课程的干货还是非常多的。
课程名称:Neural Networks for Machine Learning课程地址:https://www.coursera.org/learn/neural-networks
UdaCity
Google工程师出品的一个偏重实践的深度学习课程。讲解非常简明扼要,并且注重和实践相结合。推荐。
课程名称:深度学习课程地址:https://cn.udacity.com/course/deep-learning–ud730
小象学院
国内小象学院出品的一个深度学习课程,理论与实践并重。由纽约城市大学的博士李伟主讲,优点是包含了很多业内最新的主流技术的讲解。值得一看。课程名称:深度学习(第四期)课程地址: http://www.chinahadoop.cn/classroom/45/courses
推荐阅读书目
《Deep Learning the Book》 —— 这本书是前面提到的大牛Yoshua Begio的博士生Goodfellow写的。Goodfellow是生成式对抗网络的提出者,生成式对抗网络被Yann LeCun认为是近年最激动人心的深度学习技术想法。这本书比较系统,专业,偏重理论,兼顾实践,是系统学习深度学习不可多得的好教材。英文版:http://deeplearningthebook.com目前Github上已经有人翻译出了中文版:https://github.com/exacity/deeplearningbook-chinese
推荐学习路径
不同的人有不同的需求,有些人希望掌握好理论基础,然后进行实践,有些人希望能够快速上手,马上做点东西,有些人希望理论与实践兼顾。下面推荐几条学习路径,照顾到不同的需求。大家可以根据自己的特点进行选择。
Hard wayYaser -> Geoffrey Hinton -> UdaCity -> Good Fellow特点:理论扎实,步步为营。最完整的学习路径,也是最“难”的。推荐指数: 4星
Good wayYaser -> UdaCity -> 小象学院 -> Good Fellow特点:理论扎实,紧跟潮流,兼顾实战,最后系统梳理。比较平衡的学习路径。推荐指数: 5星
“Fast” wayUdaCity -> Good Fellow特点:快速上手,然后完善理论。推荐指数: 4星
“码农” wayUdaCity特点:快速上手,注重实践。推荐指数: 3星
原文链接:http://click.aliyun.com/m/26232/
阿里巴巴算法工程师应届生招聘岗位,欢迎大家投递简历:
https://campus.alibaba.com/position.htm?refno=11792 算法工程师-机器学习 Software engineer -Machine Learning
https://campus.alibaba.com/position.htm?refno=11790 算法工程师-语音对话交互 Software engineer -Speech & Interaction
https://campus.alibaba.com/position.htm?refno=11791 算法工程师-自然语言处理 Software engineer -Natural Language Processing
https://campus.alibaba.com/position.htm?refno=11793 算法工程师-图像图形 Software engineer - Computer Vision & Graphics
https://campus.alibaba.com/position.htm?refno=11813 基础平台研发工程师 Software Engineer – Platform