支持向量机SVM [核函数和参数]

核映射与核函数

通过核函数,支持向量机可以将特征向量映射到更高维的空间中,使得原本线性不可分的数据在映射之后的空间中变得线性可分。假设原始向量为x,映射之后的向量为z,这个映射为:

在实现时不需要直接对特征向量做这个映射,而是用核函数对两个特征向量的内积进行变换,这样做等价于先对向量进行映射然后再做内积:

在这里K为核函数。常用的非线性核函数有多项式核,高斯核(也叫径向基函数核,RBF)。下表列出了各种核函数的计算公式:

其中γ,b,d为人工设置的参数,d是一个正整数,γ为正实数,b为非负实数。

使用核函数后,支持向量机在训练时求解的对偶问题为:

其中为训练样本,为样本的特征向量,为类别标签,取值为,分别对应正样本和负样本,l为训练样本数。C为惩罚因子,用于对错误分类的训练样本进行惩罚,是一个人工设定的参数。在训练时,如果使用多项式核,需要指定的参数为核函数参数γ,b,以及d。如果选用高斯核,需要指定的参数为γ。无论使用哪种核函数,训练时都要指定惩罚因子C,这是一个大于0的实数。预测时的分类判别函数为:

其中sgn为符号函数,定义为:

 

实验

支持向量机真的能对非线性的数据进行分类吗?不同的训练参数会对分类结果产生什么样的影响?下面我们用一个小实验来验证。在这里,我们对二维平面上512x512像素的图像中的所有点进行分类,有蓝色和红色两类。先用一批样本训练一个模型,然后对平面内所有的点进行分类,分类结果的颜色和训练样本的颜色相同。

首先来看支持向量机能否处理异或问题,这是人工智能里一个很经典的分类问题,两类训练样本分别落在两个对角线上:

显然,用一条直线无论怎样划分都无法将这两类样本正确的分开。下面来看SVM的表现,我们使用线性核,多项式核,高斯核三种核函数进行训练。

首先选用线性核,结果是这样的:

所有样本都被判定成红色。不出所料,使用线性核的SVM是无法解决异或问题的。

接下来选用多项式核。首先将参数设置为:

分类效果非常差:

蓝色的样本只有少数被分对了。下面调整训练参数:

这里只加大了惩罚因子C的子,分类效果如下:

这比之前好了,蓝色的样本有一半被分对。接着调整参数:

分类效果如下:

现在是见证奇迹的时刻!所有训练样本都被正确分类,看来加大C的值非常有效。

下面来看高斯核的表现,如果参数设置为:

分类效果也是非常差:

所有的点都被分成了红色。下面加大惩罚因子的值:

大部分训练样本都可以正确分类:

进一步加大C的值:

效果比刚才更好,所有样本基本上都被正确分类了。

继续调整,加大C的值:

所有样本都被正确分类。

如果我们只加大γ的值,也能达到很好的效果:

所有样本同样被正确分类。

结论

通过上面的实验我们发现使用多项式核、高斯核的SVM确实是可以解决线性不可分问题的。不同的参数对精度的影响非常大,一般来说,C越大,训练得到的模型越准确。如果采用高斯核,参数γ的值对精度影响也非常大。因此,在实际应用时调一组好的参数对使用效果非常重要!

转载自:

SIGAI 【实验】理解SVM的核函数和参数

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值