高等数学:第五章 定积分(4) 定积分的换元法

§5.4  定积分的换元法

一、换元公式

定理】若

1、函数上连续;

2、函数在区间上单值且具有连续导数;

3、当上变化时,的值在上变化,且

 , 

则有

                          (1)

证明:

(1)式中的被积函数在其积分区间上均是连续, 故(1)式两端的定积分存在。且(1)式两端的被积函数的原函数均是存在的。

假设上的一个原函数,据牛顿—莱布尼兹公式有

另一方面, 函数的导数为

这表明: 函数上的一个原函数, 故有:

从而有   

对这一定理给出几点注解:

1、用替换,将原来变量代换成新变量后,原定积分的限应同时换成新变量的限。

求出的原函数后,不必象不定积分那样,将变换成原变量的函数,只需将新变量的上下限代入中然后相减即可。

2、应注意代换的条件,避免出错。

(1)、单值且连续;

(2)、

3、对于时, 换元公式(1)仍然成立。

 

【例1】求  

【解法一】 令

时,;当时,

又当  时,有

且变换函数 上单值,上连续,

由换元公式有

 

【解法二】令

时, ;  当时,

又当时,

且变换函数上单值, 上连续,

由换元公式有

注意:

在【解法二】中,经过换元,定积分的下限较上限大。

换元公式也可以反过来, 即

【例2】求

解:设

时,;当  时,

 

一般来说,这类换元可以不明显地写出新变量,自然也就不必改变定积分的上下限。

二、常用的变量替换技术与几个常用的结论

【例3】证明

1、若上连续且为偶函数,则

2、若上连续且为奇函数,则

证明:由定积分对区间的可加性有

  

作替换  得

故有


 

为偶函数, 则

为奇函数, 则 

【例4】若上连续, 证明:

1、

2、

并由此式计算定积分 

 

1、证明:设

 

2、证明: 设

 

 

 

【例5】求

解:令

故 

评注:

这一定积分的计算并未求原函数,只用到了变量替换、定积分性质,这一解法值得我们学习。

 

Vivado2023是一款集成开发环境软件,用于设计和验证FPGA(现场可编程门阵列)和可编程逻辑器件。对于使用Vivado2023的用户来说,license是必不可少的。 Vivado2023的license是一种许可证,用于授权用户合法使用该软件。许可证分为多种类型,包括评估许可证、开发许可证和节点许可证等。每种许可证都有不同的使用条件和功能。 评估许可证是免费提供的,让用户可以在一段时间内试用Vivado2023的全部功能。用户可以使用这个许可证来了解软件的性能和特点,对于初学者和小规模项目来说是一个很好的选择。但是,使用评估许可证的用户在使用期限过后需要购买正式的许可证才能继续使用软件。 开发许可证是付费的,可以永久使用Vivado2023的全部功能。这种许可证适用于需要长期使用Vivado2023进行开发的用户,通常是专业的FPGA设计师或工程师。购买开发许可证可以享受Vivado2023的技术支持和更新服务,确保软件始终保持最新的版本和功能。 节点许可证是用于多设备或分布式设计的许可证,可以在多个计算机上安装Vivado2023,并共享使用。节点许可证适用于大规模项目或需要多个处理节点进行设计的用户,可以提高工作效率和资源利用率。 总之,Vivado2023 license是用户在使用Vivado2023时必须考虑的问题。用户可以根据自己的需求选择合适的许可证类型,以便获取最佳的软件使用体验。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值