高等数学:第六章 定积分的应用(4)平面曲线的弧长

本文详细介绍了在直角坐标系、参数方程和极坐标系下计算平面曲线弧长的方法,通过具体实例展示了不同情况下弧长的计算过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

§6.4  平面曲线的弧长

一、直角坐标情形

设函数在区间上具有一阶连续的导数,计算曲线的长度

为积分变量,则,在上任取一小区间,那么这一小区间所对应的曲线弧段的长度可以用它的弧微分来近似。

于是,弧长元素为

弧长为

【例1】计算曲线的弧长。

解:

二、参数方程的情形

若曲线由参数方程

给出,计算它的弧长时,只需要将弧微分写成

的形式,从而有

【例2】计算半径为的圆周长度。

解: 圆的参数方程为

   

三、极坐标情形

若曲线由极坐标方程

给出,要导出它的弧长计算公式,只需要将极坐标方程化成参数方程,再利用参数方程下的弧长计算公式即可。

曲线的参数方程为

此时变成了参数,且弧长元素为

从而有

【例3】计算心脏线的弧长。

解:

 

 

 

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值