目标函数反向求道注意事项

Loss函数通常作用于一个batch

在计算loss时,我们不会用一条数据去求梯度,进行优化。这样会导致loss波动较大,而且不利于发挥计算机并行计算的能力。我们会选择一个batch的数据,用其均值求梯度,进行优化

# 求batch内的均值
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))

 


作者:纵横
链接:https://www.zhihu.com/question/27700702/answer/459971765
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值