使用一维数组和二维数组来存储矩阵并进行乘法运算

#include <iostream>
using namespace std;
int c[3][2]={0};
int d[6]={0};
//二维数组存储矩阵乘法
void multi(int a[3][3], int b[3][2]){
	for (int i=0;i<3;i++)			//i代表a矩阵的行数
	{
		for (int j=0;j<2;j++)		//j代表b矩阵的列数
		{
			for (int k=0;k<3;k++)	//k代表a矩阵的列数和b数组的行数
			{
				c[i][j]+=a[i][k]*b[k][j];
			}
		}
	}
}
//一维数组存储矩阵乘法
void multi2(int a[9], int b[6]){
	for (int i=0;i<3;i++)			//i代表a矩阵的行数
	{
		for (int j=0;j<2;j++)		//j代表b矩阵的列数
		{
			for (int k=0;k<3;k++)	//k代表a矩阵的列数和b数组的行数
			{
				//一个矩阵用一维数组存储时(假设该矩阵为m*n的),则
				//a[i][j]在这个一维数组中的位置为array[n*i+j]
				d[2*i+j]+=a[3*i+k]*b[2*k+j];
			}
		}
	}
}

int main(){
	//使用一维数组进行矩阵乘法运算
	int a1[9]={1,1,1,2,2,2,3,3,3};
	int b1[6]={1,2,3,4,5,6};
	//for (int i=0;i<6;i++)
	//	d[i]=0;
	multi2(a1,b1);
	for (int i=0;i<6;i++)
		cout << d[i] << " ";
	cout << endl;

	//使用二维数组进行矩阵乘法运算
	int a2[3][3]={{1,1,1,},{2,2,2},{3,3,3}};
	int b2[3][2]={{1,2},{3,4},{5,6}};
	//for (int i=0;i<3;i++)
	//{
	//	for (int j=0;j<2;j++)
	//		c[i][j]=0;
	//}
	multi(a2,b2);
	for (int i=0;i<3;i++)
	{
		for (int j=0;j<2;j++)
			cout << c[i][j] <<" ";
		cout << endl;
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值