【leetcode-Python】-Dynamic Programming -122. Best Time to Buy and Sell Stock II

目录

 

题目链接

题目描述

示例

解题思路

Python实现

时间复杂度与空间复杂度

Python实现·优化空间复杂度

时间复杂度与空间复杂度

解题思路二·贪心算法

Python实现

时间复杂度与空间复杂度

参考


题目链接

https://leetcode.com/problems/best-time-to-buy-and-sell-stock-ii/

题目描述

给定价格数组prices,prices[i]表示一支给定股票第i天的价格。你可以多次买卖这支股票(卖掉手里的股票后才能再次购买),设计算法来计算能够获得的最大利润。

示例

输入:[7,1,5,3,6,4]

输出:7

在第二天买入,第三天卖出可得利润4,然后在第四天买入,第五天卖出,得到利润3。总利润为7。

解题思路

此题为【leetcode-Python】-Dynamic Programming -121. Best Time to Buy and Sell Stock题目的扩展,不限制交易次数。此题仍然可以用动态规划方法求解。将当前天数、当前是否持股定义为状态。选择仍然包含三种:买入、卖出、无操作。i从0开始计数,令dp[i][0]表示第i天结束后不持股手中的最大现金数,dp[i][1]表示第i天结束后仍然持股手中的最大现金数。

因此考虑第i天和第i-1天的关系,dp[i][0]有两种可能:
(1)第i-1天仍然持股,第i天卖出。这种情况下dp[i][0] = dp[i-1][1] + prices[i]。

(2)第i-1天不持股,第i天无操作。这种情况下dp[i][0] = dp[i-1][0]。

dp[i][0]将取这两种可能中的最大值。

dp[i][1]也有两种可能:
(1)第i-1天仍然持股,第i天无操作。此时dp[i][1] = dp[i-1][1]。

(2)第i-1天不持股,第i天买入。此时dp[i][1] = dp[i-1][0]-prices[i]。(注意如果有只能交易1次的约束,这种情况dp[i][1] = -prices[i]。但是由于可以多次交易,要从第i-1天手里的钱减去第i天买入股票要花的钱)

dp[i][1]将取这两种可能中的最大值。

base case:dp[0][0]表示第0天不持股,那么有dp[0][0] = 0,dp[0][1]表示第0天持股,那么有dp[0][1] = -prices[0],即在第0天买入。

Python实现

class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        dp = [[0 for _ in range(2)] for _ in range(len(prices))]
        dp[0][1] = -prices[0]
        for i in range(1,len(prices)):
            dp[i][0] = max(dp[i-1][0],dp[i-1][1] + prices[i])
            dp[i][1] = max(dp[i-1][1],dp[i-1][0] - prices[i])
        return dp[len(prices)-1][0]
        

时间复杂度与空间复杂度

时间复杂度为O(N),空间复杂度为O(N)。

Python实现·优化空间复杂度

空间复杂度可以进一步优化,由于dp[i][0],dp[i][1]的计算仅与dp[i-1][0],dp[i-1][1]和当前的价格prices[i]有关,因此可以用两个变量来存储dp[i][0]和dp[i][1]。

需要注意的是,由于dp_0先于dp_1更新,应该在更新第i天的dp_0(dp[i][0])之前需要先用一个局部变量存储第i-1天的dp_0(dp[i-1][0]),不然在更新dp_1(dp[i][1])时直接用更新后的dp_0会出错。

class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        dp_0,dp_1 = 0,-prices[0] #初始化定义第1天不持股、第1天持股两种情况下手中的钱。
        for i in range(1,len(prices)):
            tmp = dp_0
            dp_0 = max(dp_0,dp_1 + prices[i])
            dp_1 = max(dp_1,tmp - prices[i])
        return dp_0
        

时间复杂度与空间复杂度

时间复杂度为O(N),空间复杂度为O(1)。

解题思路二·贪心算法

和动态规划、回溯一样,贪心算法在解决问题时也是分步决策。贪心算法指的是,在对问题求解时,每一步做出当时看起来最佳的选择,即做出局部最优解。但贪心算法并不能够保证得到全局最优。

如果第0天买入,第3天卖出,那么得到的利润为prices[3]-prices[0],等价于(prices[3] - prices[2]) + (prices[2] - prices[1]) + (prices[1] - prices[0])。因此第0天买入,第3天卖出的整体利润可以分配到各天的价格差中。

如对于给定的股票价格序列[1,7,1,5,10]可以得到价格差序列[6,-6,4,5]。

如果交易次数可以无限多,那么要想使利润最大,贪心策略可以是“只收集正利润”,即如果当天的价格大于前一天的价格,就在前一天买入,在当前天卖出,并把价格差加入到总利润里。局部最优值就是每天的正利润,正利润相加得到的就是全局最多利润。

需要注意的是,在这个问题中,贪心算法只能用于计算最大利润,计算的过程并不是实际的交易过程。比如即使需要将4和5相加,但是表示的是从第2天买入(从0开始计天数,价格为1),第4天卖出(价格为10)。

Python实现


class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        result = 0
        for i in range(1,len(prices)):
            if (prices[i]>prices[i-1]):
                result += (prices[i]-prices[i-1])
        return result

时间复杂度与空间复杂度

时间复杂度为O(N),空间复杂度为O(1)。

参考

https://labuladong.gitbook.io/algo/dong-tai-gui-hua-xi-lie/qi-ta-suan-fa-wen-ti/tuan-mie-gu-piao-wen-ti

https://leetcode-cn.com/problems/best-time-to-buy-and-sell-stock-ii/solution/tan-xin-suan-fa-by-liweiwei1419-2/

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 好的,我来用中文回复这个链接:https://leetcode-cn.com/tag/dynamic-programming/ 这个链接是 LeetCode 上关于动态规划的题目集合。动态规划是一种常用的算法思想,可以用来解决很多实际问题,比如最长公共子序列、背包问题、最短路径等等。在 LeetCode 上,动态规划也是一个非常重要的题型,很多题目都需要用到动态规划的思想来解决。 这个链接里包含了很多关于动态规划的题目,按照难度从简单到困难排列。每个题目都有详细的题目描述、输入输出样例、题目解析和代码实现等内容,非常适合想要学习动态规划算法的人来练习和提高自己的能力。 总之,这个链接是一个非常好的学习动态规划算法的资源,建议大家多多利用。 ### 回答2: 动态规划是一种算法思想,通常用于优化具有重叠子问题和最优子结构性质的问题。由于其成熟的数学理论和强大的实用效果,动态规划在计算机科学、数学、经济学、管理学等领域均有重要应用。 在计算机科学领域,动态规划常用于解决最优化问题,如背包问题、图像处理、语音识别、自然语言处理等。同时,在计算机网络和分布式系统中,动态规划也广泛应用于各种优化算法中,如链路优化、路由算法、网络流量控制等。 对于算法领域的程序员而言,动态规划是一种必要的技能和知识点。在LeetCode这样的程序员平台上,题目分类和标签设置十分细致和方便,方便程序员查找并深入学习不同类型的算法。 LeetCode的动态规划标签下的题目涵盖了各种难度级别和场景的问题。从简单的斐波那契数列、迷宫问题到可以用于实际应用的背包问题、最长公共子序列等,难度不断递进且话题丰富,有助于开发人员掌握动态规划的实际应用技能和抽象思维模式。 因此,深入LeetCode动态规划分类下的题目学习和练习,对于程序员的职业发展和技能提升有着重要的意义。 ### 回答3: 动态规划是一种常见的算法思想,它通过将问题拆分成子问题的方式进行求解。在LeetCode中,动态规划标签涵盖了众多经典和优美的算法问题,例如斐波那契数列、矩阵链乘法、背包问题等。 动态规划的核心思想是“记忆化搜索”,即将中间状态保存下来,避免重复计算。通常情况下,我们会使用一张二维表来记录状态转移过程中的中间值,例如动态规划求解斐波那契数列问题时,就可以定义一个二维数组f[i][j],代表第i项斐波那契数列中,第j个元素的值。 在LeetCode中,动态规划标签下有众多难度不同的问题。例如,经典的“爬楼梯”问题,要求我们计算到n级楼梯的方案数。这个问题的解法非常简单,只需要维护一个长度为n的数组,记录到达每一级楼梯的方案数即可。类似的问题还有“零钱兑换”、“乘积最大子数组”、“通配符匹配”等,它们都采用了类似的动态规划思想,通过拆分问题、保存中间状态来求解问题。 需要注意的是,动态规划算法并不是万能的,它虽然可以处理众多经典问题,但在某些场景下并不适用。例如,某些问题的状态转移过程比较复杂,或者状态转移方程中存在多个参数,这些情况下使用动态规划算法可能会变得比较麻烦。此外,动态规划算法也存在一些常见误区,例如错用贪心思想、未考虑边界情况等。 总之,掌握动态规划算法对于LeetCode的学习和解题都非常重要。除了刷题以外,我们还可以通过阅读经典的动态规划书籍,例如《算法竞赛进阶指南》、《算法与数据结构基础》等,来深入理解这种算法思想。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值