【leetcode-Python】-Dynamic Programming -123. Best Time to Buy and Sell Stock III

题目链接

https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iii/

题目描述

给定价格数组prices,prices[i]表示一支给定股票第i天的价格。限定只能交易两次(卖掉手里的股票后才能再次购买),设计算法来计算能够获得的最大利润。

示例

输入:prices = [3,3,5,0,0,3,1,4]

输出:6

i从0开始计数,在第3天(价格为0)买入,第5天(价格为3)卖出,得利润3。然后在第6天买入(价格为1),在第7天(价格为4)卖出,得利润3。因此总利润为6。

解题思路

此题为【leetcode-Python】-Dynamic Programming -121. Best Time to Buy and Sell Stock【leetcode-Python】-Dynamic Programming -122. Best Time to Buy and Sell Stock II的拓展,限定最多交易次数为2。

参考k为任意值的问题【leetcode-Python】-Dynamic Programming -188. Best Time to Buy and Sell Stock IV,将k设定为2即可。

Python实现

class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        n = len(prices)
        if n < 1:
            return 0
        dp = [[0 for _ in range(3)] for _ in range(2)]
        for i in range(3):
            dp[1][i] = -prices[0]
        dp[1][0] = -float('inf')
        for i in range(1,n):
            for k in range(2,0,-1): #这里k的范围如果是[2,-1)会出错。k=0是边界条件,不在这里更新。
                dp[0][k] = max(dp[0][k],dp[1][k] + prices[i]) 
                dp[1][k] = max(dp[1][k],dp[0][k-1] - prices[i])
        return dp[0][2]
            

时间复杂度与空间复杂度

时间复杂度为O(N),空间复杂度为O(1)。

解题思路二

由于k比较小,因此可以仅用几个状态变量来保存、更新状态。每天可能的操作包括:无操作、买入、卖出三种。在最多交易次数为2的情况下,每天操作结束后,其状态包括以下五种:

“无任何操作”、“买入了一次”、“买入一次,卖出一次”、“买入两次,卖出一次”、“买入两次,卖出两次”

“无任何操作“的利润为0,无需更新。定义buy1(i)、sell1(i)、buy2(i)、sell2(i)分别表示第i天处于“买入了一次”、“买入一次,卖出一次”、“买入两次,卖出一次”、“买入两次,卖出两次”状态时的最大利润。

第i天处于“买入了一次”状态时,可能的情况包括:

(1)第i-1天处于“无任何操作”状态,第i天买入。对应利润为-pirces[i]

(2)第i-1天处于“买入了一次”状态,第i天无操作。对应利润为buy1(i-1)。

因此有buy1(i) = max(-pirces[i],buy1(i-1))。

第i天处于“买入一次,卖出一次”状态时,可能的情况包括:

(1)第i-1天处于“买入了一次”状态,第i天卖出。对应利润为buy1(i-1)+pirces[i]

(2)第i-1天处于“买入一次,卖出一次”状态,第i天无操作。对应利润为sell1(i-1)。

因此有sell1(i) = max(buy1(i-1)+pirces[i],sell1(i-1))。

第i天处于“买入两次,卖出一次”状态时,可能的情况包括:

(1)第i-1天处于“买入一次、卖出一次”状态,第i天买入。对应利润为sell1(i-1)-pirces[i]

(2)第i-1天处于“买入两次,卖出一次”状态,第i天无操作。对应利润为buy2(i-1)。

因此有buy2(i) = max(sell1(i-1)-pirces[i],buy2(i-1))。

第i天处于“买入两次,卖出两次”状态时,可能的情况包括:

(1)第i-1天处于“买入两次,卖出一次”状态,第i天卖出。对应利润为buy2(i-1)+pirces[i]

(2)第i-1天处于“买入两次,卖出两次”状态,第i天无操作。对应利润为sell2(i-1)。

因此有sell2(i) = max(buy2(i-1)+pirces[i],sell2(i-1))。

总结状态转移方程为:

buy1(i) = max(-pirces[i],buy1(i-1))

sell1(i) = max(buy1(i-1)+pirces[i],sell1(i-1))

buy2(i) = max(sell1(i-1)-pirces[i],buy2(i-1))

sell2(i) = max(buy2(i-1)+pirces[i],sell2(i-1))

base case:

buy1的初始值表示第0天只买入一次,因此利润为-prices[0]。

sell1的初始值可以表示第0天买入一次、卖出一次,因此利润为0。

buy2的初始值可以表示第0天买入两次、卖出一次,因此利润为-prices[0]

sell2的初始值可以表示第0天买入两次、卖出两次,因此利润为0。

Python实现

在代码中需要循环更新四个变量,由于第i天sell2的计算会依赖第i-1天buy2的值,第i天buy2的计算会依赖第i-1天sell1的值,第i天sell1的计算会依赖第i-1天buy1的值,因此在更新时,依次更新sell2、buy2、sell1、buy1。

class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        #i=0的情况初始化
        buy1,sell1,buy2,sell2 = -prices[0],0,-prices[0],0
        #这种也更新方式非常好记
        for i in range(1,len(prices)):
            sell2 = max(buy2+prices[i],sell2)
            buy2 = max(sell1-prices[i],buy2)
            sell1 = max(buy1+prices[i],sell1)
            buy1 = max(-prices[i],buy1)
        return sell2
            

扩展

需要注意的是,无论题目中“在同一天买入,同一天卖出”这种操作是否允许,最终结果都不会受到影响。因为同一天买入、同一天卖出操作的收益为0。

由于buy1(i) = max(-pirces[i],buy1(i-1)),因此buy1(i)+prices[i] = max(buy1(i-1)+prices[i],-prices[i]+prices[i])。-prices[i]+prices[i] 表示在第i天买入,又在第i天卖出,不会带来额外的收益,因此不会对结果产生影响。另外从表达意义上看,buy1(i)和buy1(i-1)相比,多考虑了一种在第i天买入股票的情况,但是在计算sell1状态时,考虑了在第i天卖出股票的情况。因此,即便是用buy1(i)代替buy1(i-1),多考虑的“在第i天买入股票”的情况在第i天卖出股票的情况同时出现,收益为0,因此不会对结果造成任何影响。

同样的,buy2(i)也可以在sell1(i)的基础上更新,sell2(i)也可以在buy2(i)的基础上更新。

因此状态转移方程可以写为

buy1(i) = max(-pirces[i],buy1(i-1))

sell1(i) = max(buy1(i)+pirces[i],sell1(i-1))

buy2(i) = max(sell1(i)-pirces[i],buy2(i-1))

sell2(i) = max(buy2(i)+pirces[i],sell2(i-1))

Python实现

class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        buy1,sell1,buy2,sell2 = -prices[0],0,-prices[0],0
        for i in range(1,len(prices)):
            buy1 = max(-prices[i],buy1)
            sell1 = max(buy1+prices[i],sell1)
            buy2 = max(sell1-prices[i],buy2)
            sell2 = max(buy2 + prices[i],sell2)
        return sell2

参考

https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iii/discuss/39611/Is-it-Best-Solution-with-O(n)-O(1).

https://leetcode-cn.com/problems/best-time-to-buy-and-sell-stock-iii/solution/mai-mai-gu-piao-de-zui-jia-shi-ji-iii-by-wrnt/

 

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 好的,我来用中文回复这个链接:https://leetcode-cn.com/tag/dynamic-programming/ 这个链接是 LeetCode 上关于动态规划的题目集合。动态规划是一种常用的算法思想,可以用来解决很多实际问题,比如最长公共子序列、背包问题、最短路径等等。在 LeetCode 上,动态规划也是一个非常重要的题型,很多题目都需要用到动态规划的思想来解决。 这个链接里包含了很多关于动态规划的题目,按照难度从简单到困难排列。每个题目都有详细的题目描述、输入输出样例、题目解析和代码实现等内容,非常适合想要学习动态规划算法的人来练习和提高自己的能力。 总之,这个链接是一个非常好的学习动态规划算法的资源,建议大家多多利用。 ### 回答2: 动态规划是一种算法思想,通常用于优化具有重叠子问题和最优子结构性质的问题。由于其成熟的数学理论和强大的实用效果,动态规划在计算机科学、数学、经济学、管理学等领域均有重要应用。 在计算机科学领域,动态规划常用于解决最优化问题,如背包问题、图像处理、语音识别、自然语言处理等。同时,在计算机网络和分布式系统中,动态规划也广泛应用于各种优化算法中,如链路优化、路由算法、网络流量控制等。 对于算法领域的程序员而言,动态规划是一种必要的技能和知识点。在LeetCode这样的程序员平台上,题目分类和标签设置十分细致和方便,方便程序员查找并深入学习不同类型的算法。 LeetCode的动态规划标签下的题目涵盖了各种难度级别和场景的问题。从简单的斐波那契数列、迷宫问题到可以用于实际应用的背包问题、最长公共子序列等,难度不断递进且话题丰富,有助于开发人员掌握动态规划的实际应用技能和抽象思维模式。 因此,深入LeetCode动态规划分类下的题目学习和练习,对于程序员的职业发展和技能提升有着重要的意义。 ### 回答3: 动态规划是一种常见的算法思想,它通过将问题拆分成子问题的方式进行求解。在LeetCode中,动态规划标签涵盖了众多经典和优美的算法问题,例如斐波那契数列、矩阵链乘法、背包问题等。 动态规划的核心思想是“记忆化搜索”,即将中间状态保存下来,避免重复计算。通常情况下,我们会使用一张二维表来记录状态转移过程中的中间值,例如动态规划求解斐波那契数列问题时,就可以定义一个二维数组f[i][j],代表第i项斐波那契数列中,第j个元素的值。 在LeetCode中,动态规划标签下有众多难度不同的问题。例如,经典的“爬楼梯”问题,要求我们计算到n级楼梯的方案数。这个问题的解法非常简单,只需要维护一个长度为n的数组,记录到达每一级楼梯的方案数即可。类似的问题还有“零钱兑换”、“乘积最大子数组”、“通配符匹配”等,它们都采用了类似的动态规划思想,通过拆分问题、保存中间状态来求解问题。 需要注意的是,动态规划算法并不是万能的,它虽然可以处理众多经典问题,但在某些场景下并不适用。例如,某些问题的状态转移过程比较复杂,或者状态转移方程中存在多个参数,这些情况下使用动态规划算法可能会变得比较麻烦。此外,动态规划算法也存在一些常见误区,例如错用贪心思想、未考虑边界情况等。 总之,掌握动态规划算法对于LeetCode的学习和解题都非常重要。除了刷题以外,我们还可以通过阅读经典的动态规划书籍,例如《算法竞赛进阶指南》、《算法与数据结构基础》等,来深入理解这种算法思想。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值