RSA 加密算法原理简述

概述

  本文旨在说明RSA加密算法的原理及实现,而其相关的数学部分的证明则不是本文内容。

 

版权说明

著作权归作者所有。

商业转载请联系作者获得授权,非商业转载请注明出处。

作者:Q-WHai

发表日期: 2016年2月29日

本文链接:http://blog.csdn.net/lemon_tree12138/article/details/50696926

来源:CSDN

更多内容:分类 » 数据加密与信息安全

 

RSA简介

  1977年,三位数学家Rivest、Shamir 和 Adleman 设计了一种算法,可以实现非对称加密。这种算法用他们三个人的名字命名,叫做RSA算法。从那时直到现在,RSA算法一直是最广为使用的"非对称加密算法"。毫不夸张地说,只要有计算机网络的地方,就有RSA算法。

                                                                                   -- 摘自网络

 

数学背景

  此部分旨在补充本文的完整性。如果说你已经了解,或是不想了解此部分内容。那么可以直接跳过此部分的阅读。

  虽说只是补充说明(只能是补充的原因是因为博主的数学也是比较差的-_-!!!),但是此部分的内容却是相当重要的。博主还是希望可以重新阅读一下此部分。

1.互质

  从小学开始,我们就了解了什么是质数。互质是针对多个数字而言的,如果两个正整数,除了1以外,没有其他公因子,那么就称这两个数是互质关系(注意,这里并没有说这两个数一定是质数或有一个为质数。比如15跟4就是互质关系)。以下有一些关于质数与互质的性质:

 

  • 质数只能被1和它自身整除
  • 任意两个质数都是互质关系
  • 如果两个数之中,较大的那个数是质数,则两者构成互质关系
  • 如果两个数之中,较小的那个数是质数,且较大数不为较小数的整数倍,则两者构成互质关系
  • 1和任意一个自然数是都是互质关系
  • p是大于1的整数,则p和p-1构成互质关系
  • p是大于1的奇数,则p和p-2构成互质关系

 

2.欧拉函数

  欧拉函数是求小于x并且和x互质的数的个数。其通式为:φ(x) = x(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)…..(1-1/pn)

  其中p1, p2……pn为x的所有质因数,x是不为0的整数。看到这里是不是有一些头疼,太理论的东西的确不够具象。我们且不去理会后面公式计算与论证,因为已经超出本文的范围了。就前一句来说说吧,欧拉函数是求小于x并且和x互质的数的个数。这里我可以列举一个例子:

  令x = 16,那么x的所有质因数为:φ(16) = 16 * (1 - 1/2) = 8

  我们也可以枚举出所有比16小,且与16互质的数:1, 3, 5, 7, 9, 11, 13, 15

  现在也给出部分欧拉函数的性质:

 

  • 若n是素数p的k次幂,,因为除了p的倍数外,其他数都跟n互质
  • 欧拉函数是积性函数——若m,n互质,
  • 当n为奇数时,
  • p是素数,,φ(p)称为p的欧拉值

 

  欧拉函数更多参考请见这里的链接

 

3.模反元素

定义:如果两个正整数a和n互质,那么一定可以找到整数b,使得 ab-1 被n整除,或者说ab被n除的余数是1。

关于模反元素的求解,使用的是朴素的解法。如果读者想要更进一步了解的话,请自行搜索其他解法(比如:辗转相除法、欧几里德算法)。

 

RSA原理

  在RSA原理之前,我想还是有必要了解一下非对称加密算法的加密跟解密过程。下面就是一幅非称加密算法的流程图。

  

  在此可以看到,非对称加密是通过两个密钥(公钥-私钥)来实现对数据的加密和解密的。公钥用于加密,私钥用于解密。对于非对称的加密和解密为什么可以使用不同的密钥来进行,这些都是数学上的问题了。不同的非对称加密算法也会应用到不同的数学知识。上面也对RSA中使用的数学问题做了一个小小的介绍。现在就来看看RSA算法是怎么来对数据进行加密的吧,如下是一幅RSA加密算法流程及加密过程图。

  

 

RSA算法优点

  1. 不需要进行密钥传递,提高了安全性
  2. 可以进行数字签名认证

RSA算法缺点

  1. 加密解密效率不高,一般只适用于处理小量数据(如:密钥)
  2. 容易遭受小指数攻击

 

其他加密算法相关参考:

 

AES 加密算法的原理详解:https://blog.csdn.net/gulang03/article/details/81175854

Java实现AES和RSA算法:https://blog.csdn.net/gulang03/article/details/81771341

 

JS 与 JAVA 跨语言实现 RSA 和 AES加密算法:https://blog.csdn.net/gulang03/article/details/82230408

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值