DataFrame里的replace替换

本文介绍了Python DataFrame中replace方法的使用,包括一对一、多对一及多对多的替换操作。通过replace方法,可以方便地对数据进行填充和替换,如替换缺失值,将特定值批量替换为其他值等。示例中展示了如何处理异常数据,如将异常年龄替换为平均值或其加减一定数值。
摘要由CSDN通过智能技术生成

一对一替换:

在Python中对某个值进行替换利用的是replace()方法,replace(A,B)表示将A替换成B。

有时候要对整个表进行替换,比如对全表中的缺失值进行替换,这个时候replace()方法就相当于fillna()方法了。

 

多对一替换:

多对一替换就是把一块区域中的多个值替换成某一个值,已知现在有三个异常年龄(240、260、280),需要把这三个年龄都替换成正常范围年龄的平均值33,该怎么实现呢?

在 Python 中实现多对一的替换比较简单,同样也是利用 replace()方法, replace([A,B],C)表示将A、B替换成C。

 

多对多替换:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值