逻辑回归模型的算法原理:
分类模型与回归模型的区别在于其预测的变量不是连续的,而是离散的一些类别,例如,最常见的二分类模型可以预测一个人是否会违约、客户是否会流失、肿瘤是良性还是恶性等。逻辑回归模型虽然名字中有“回归”二字,但其在本质上却是分类模型。
既然逻辑回归模型是分类模型,为什么名字里会含有“回归”二字呢?这是因为其算法原理同样涉及线性回归模型中的线性回归方程。
上面这个方程是用于预测连续变量的,其取值范围为(-∞,+∞),而逻辑回归模型是用于预测类别的,例如,用逻辑回归模型预测某物品是属于A类还是B类,在本质上预测的是该物品属于A类或B类的概率,而概率的取值范围是0~1,因此不能直接用线性回归方程来预测概率,那么如何把一个取值范围是(-∞,+∞)的回归方程变为取值范围是(0,1)的内容呢?这就需要用到下图所示的Sigmoid函数,它可将取值范围为(-∞,+∞)的数转换到(0,1)之间。例如,假设y=3,通过Sigmoid函数转换后,f(y)=1/(1+e-3)=0.95,就可以作为一个概率值使用了。
总结来说,逻辑回归模型本质就是将线性回归模型通过Sigmoid