朴素贝叶斯模型

朴素贝叶斯是基于贝叶斯定理的简单分类算法,常用于文本分类。本文介绍了朴素贝叶斯模型的核心公式,并提供了一个肿瘤预测模型的实战案例,强调了模型在处理特征独立性假设下的高效性。尽管模型泛化能力较弱,但在大量样本和特征时仍能展现出良好的预测效果。
摘要由CSDN通过智能技术生成

贝叶斯分类是机器学习中应用极为广泛的分类算法之一,其产生自英国数学家贝叶斯对于逆概问题的思考。朴素贝叶斯是贝叶斯模型当中最简单的一种,其算法核心为如下所示的贝叶斯公式。

 方便记忆的转换形式: pAB/pBA=pA/pB

其中P(A)为事件A发生的概率,P(B)为事件B发生的概率,P(A|B)表示在事件B发生的条件下事件A发生的概率,同理P(B|A)则表示在事件A发生的条件下事件B发生的概率。

'''朴素贝叶斯模型的简单代码实现  '''

from sklearn.naive_bayes import GaussianNB
x=[[1,2],[3,4],[5,6],[7,8],[9,10]]
'''第2行代码中的X是特征变量,共有2个特征;第3行代码中的y是目标变量,共有2个类别——0和1 '''
y=[0,0,0,1,1]
bys_m=GaussianNB()
bys_m.fit(x,y)
print(bys_m.predict([[5,5]]))

''' 朴素贝叶斯模型案例实战----肿瘤预测模型  '''

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值