贝叶斯分类是机器学习中应用极为广泛的分类算法之一,其产生自英国数学家贝叶斯对于逆概问题的思考。朴素贝叶斯是贝叶斯模型当中最简单的一种,其算法核心为如下所示的贝叶斯公式。
方便记忆的转换形式: pAB/pBA=pA/pB
其中P(A)为事件A发生的概率,P(B)为事件B发生的概率,P(A|B)表示在事件B发生的条件下事件A发生的概率,同理P(B|A)则表示在事件A发生的条件下事件B发生的概率。
'''朴素贝叶斯模型的简单代码实现 '''
from sklearn.naive_bayes import GaussianNB
x=[[1,2],[3,4],[5,6],[7,8],[9,10]]
'''第2行代码中的X是特征变量,共有2个特征;第3行代码中的y是目标变量,共有2个类别——0和1 '''
y=[0,0,0,1,1]
bys_m=GaussianNB()
bys_m.fit(x,y)
print(bys_m.predict([[5,5]]))
''' 朴素贝叶斯模型案例实战----肿瘤预测模型 '''