数据结构初识

本文深入探讨了算法的时间复杂度和空间复杂度,介绍了如何通过大O渐进表示法分析算法效率。时间复杂度关注算法运行速度,空间复杂度则关注额外内存需求。举例说明了不同算法如搜索、排序、递归在不同情况下的时间复杂度和空间复杂度,强调在实际应用中通常关注最坏情况的时间复杂度。
摘要由CSDN通过智能技术生成

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

—数据结构初识

前言

—初步认识数据结构

提示:以下是本篇文章正文内容,下面案例可供参考

一、算法的复杂度

    算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 。因此衡量一个算法的好坏,一般

是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。
时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。在计算
机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计
算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。

二、 时间复杂度

2.1 时间复杂度的概念:

     时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一

个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知
道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个
分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法
的时间复杂度。

2.2 大O的渐进表示法:

    大O符号(Big O notation):是用于描述函数渐进行为的数学符号。

推导大O阶方法:
1、用常数1取代运行时间中的所有加法常数。
2、在修改后的运行次数函数中,只保留最高阶项。
3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。
使用大O的渐进表示法以后,Func1的时间复杂度为:
N = 10 F(N) = 100
N = 100 F(N) = 10000
N = 1000 F(N) = 1000000

通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。
另外有些算法的时间复杂度存在最好、平均和最坏情况:
最坏情况:任意输入规模的最大运行次数(上界)
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数(下界)
例如:在一个长度为N数组中搜索一个数据x
最好情况:1次找到
最坏情况:N次找到
平均情况:N/2次找到
在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)

// 计算Func3的时间复杂度?
void Func3(int N, int M)
{
int count = 0;
for (int k = 0; k < M; ++ k)
{
++count;
}
for (int k = 0; k < N ; ++ k)
{
++count;
}
printf("%d\n", count);
}
// O(M+N)  
// 当M >> N 时 ,是O(M),反之N>>M, 是O(N);
// 计算Func4的时间复杂度?
void Func4(int N)
{
int count = 0;
for (int k = 0; k < 100; ++ k)
{
++count;
}
printf("%d\n", count);
}
//  O(1)  
// 计算strchr的时间复杂度?
const char * strchr ( const char * str, int character );

// 最坏情况:任意输入规模的最大运行次数(上界) : O(N)
// 平均情况:任意输入规模的期望运行次数:            O(N/2)
// 最好情况:任意输入规模的最小运行次数(下界) :  O(1)
// 当一个算法随着输入的不同,时间复杂度不同,那就做最坏的打算,看最坏的;

// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{
assert(a);
for (size_t end = n; end > 0; --end)
{
int exchange = 0;
for (size_t i = 1; i < end; ++i)
{
if (a[i-1] > a[i])
{
Swap(&a[i-1], &a[i]);
exchange = 1;
}
}
if (exchange == 0)
break;
}
}
// F(n)= N*(N - 1)/2
// O(N^2)
// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x)
{
assert(a);
int begin = 0;
int end = n-1;
while (begin < end)
{
int mid = begin + ((end-begin)>>1);
if (a[mid] < x)
begin = mid+1;
else if (a[mid] > x)
end = mid;
else
return mid;
}
return -1;
}
// O(log2N): 
//               1*2*2*2 .... = N   ——>    2^x = N ;
//                x = log2N 
// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{
if(0 == N)
return 1;
return Fac(N-1)*N;
}
// 递归算法: 递归次数*每次递归调用的次数
// O(N)
// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N)
{
if(N < 3)
return 1;
return Fib(N-1) + Fib(N-2);
}
// Fib(N)  = 2^0 + 2^1+ 2^2 +2^(N-1) - x = 2^N - 1 - x
// O( 2^N) 

三、空间复杂度

空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度 。
空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。
空间复杂度计算规则基本跟实践复杂度类似,也使用大O渐进表示法。
注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。

空间是可以重复利用的,不累计的;时间是不可以重复利用的,累计的。

// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{
assert(a);
for (size_t end = n; end > 0; --end)
{
int exchange = 0;
for (size_t i = 1; i < end; ++i)
{
if (a[i-1] > a[i])
{
Swap(&a[i-1], &a[i]);
exchange = 1;
}
}
if (exchange == 0)
break;
}
}
// 空间复杂度 O(1)
// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{
if(n==0)
return NULL;
long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));
fibArray[0] = 0;
fibArray[1] = 1;
for (int i = 2; i <= n ; ++i)
{
fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
}
return fibArray;
}
//空间复杂度  O(N)
//时间复杂度  O(N)
// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{
if(N == 0)
return 1;
return Fac(N-1)*N;
}
//空间复杂度  O(N)
//时间复杂度  O(N)
// 计算斐波那契递归Fib的空间复杂度?
long long Fib(size_t N)
{
if(N < 3)
return 1;
return Fib(N-1) + Fib(N-2);
}
//空间复杂度  O(N)

// ***空间是可以重复利用的,不累计的;时间是不可以重复利用的,累计的。***

实例答案及分析:

  1. 实例1基本操作执行了2N+10次,通过推导大O阶方法知道,时间复杂度为 O(N)
  2. 实例2基本操作执行了M+N次,有两个未知数M和N,时间复杂度为 O(N+M)
  3. 实例3基本操作执行了10次,通过推导大O阶方法,时间复杂度为 O(1)
  4. 实例4基本操作执行最好1次,最坏N次,时间复杂度一般看最坏,时间复杂度为 O(N)
  5. 实例5基本操作执行最好N次,最坏执行了(N*(N+1)/2次,通过推导大O阶方法+时间复杂度一般看最
    坏,时间复杂度为 O(N^2)
  6. 实例6基本操作执行最好1次,最坏O(logN)次,时间复杂度为 O(logN) ps:logN在算法分析中表示是底
    数为2,对数为N。有些地方会写成lgN。(建议通过折纸查找的方式讲解logN是怎么计算出来的)
  7. 实例7通过计算分析发现基本操作递归了N次,时间复杂度为O(N)。

OJ练习题

  1. 消失的数字OJ链接:https://leetcode-cn.com/problems/missing-number-lcci/
    数组nums包含从0到n的所有整数,但其中缺了一个。请编写代码找出那个缺失的整数。你有办法在O(n)时间内完成吗?
    注意:本题相对书上原题稍作改动

在这里插入图片描述

//法2:
int missingNumber(int* nums, int numsSize)
{
 int i= 0,a = 0,b = 0;
 for(i= 0 ; i<=numsSize;i++ )
 {
     a += i;
 }
 for(i = 0;i<numsSize; i++)
 {
     b += nums[i];
 }
 return a-b;
}
//法4:异或:相异为一,相同为0;
    int missingNumber(int* nums,int numsSize)
    {
       int x = 0;
       for(int i = 0 ;i <=numsSize; ++i)
       {
           x ^=  i;
       }
       for(int i = 0 ;i <numsSize; ++i)
       {
           x ^=  nums[i];
       }
       return x ;
    }
    // 设数组是【1,3】少2,
    // 1= 0001 ;  2 = 0010 ;3 = 0011 当 x 与这三个数都异或后得到 0000;
    // x 再与 【1,3】异或后为 0010 就是少的数 2;
  1. 旋转数组OJ链接:https://leetcode-cn.com/problems/rotate-array/
    在这里插入图片描述
    在这里插入图片描述
void Resserse(int* nums ,int left,int right)
{
  while(left<right)
  {
     int tmp = nums[right];
     nums[right] = nums[left];
     nums[left] = tmp;
     left++;
     right--;
  }
}

void rotate(int* nums, int numsSize, int k)
 {
   if(k>=numsSize)
     {
         k %= numsSize;
     }
   Resserse(nums,0,numsSize - k- 1);
   Resserse(nums,numsSize - k,numsSize - 1);
   Resserse(nums,0,numsSize - 1);
 } 
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值