数独的历史:
数独前身为“九宫格”,最早起源于中国。数千年前,我们的祖先就发明了洛书,其特点较之现在的数独更为复杂,要求纵向、横向、斜向上的三个数字之和等于15,而非简单的九个数字不能重复。儒家典籍《易经》中的“九宫图”也源于此,故称“洛书九宫图”。而“九宫”之名也因《易经》在中华文化发展史上的重要地位而保存、沿用至今。
1783年,瑞士数学家莱昂哈德·欧拉发明了一种当时称作“拉丁方块”(Latin Square)的游戏,这个游戏是一个n×n的数字方阵,每一行和每一列都是由不重复的n个数字或者字母组成的。
19世纪70年代,美国的一家数学逻辑游戏杂志《戴尔铅笔字谜和词语游戏》(Dell Puzzle Mαgαzines)开始刊登现在称为“数独”的这种游戏,当时人们称之为“数字拼图”(Number Place),在这个时候,9×9的81格数字游戏才开始成型。
1984年4月,在日本游戏杂志《字谜通讯Nikoil》(《パズル通信ニコリ》)上出现了“数独”游戏,提出了“独立的数字”的概念,意思就是“这个数字只能出现一次”或者“这个数字必须是惟一的”,并将这个游戏命名为“数独”(sudoku)。
实现方法:
数独前身为“九宫格”,最早起源于中国。数千年前,我们的祖先就发明了洛书,其特点较之现在的数独更为复杂,要求纵向、横向、斜向上的三个数字之和等于15,而非简单的九个数字不能重复。儒家典籍《易经》中的“九宫图”也源于此,故称“洛书九宫图”。而“九宫”之名也因《易经》在中华文化发展史上的重要地位而保存、沿用至今。
1783年,瑞士数学家莱昂哈德·欧拉发明了一种当时称作“拉丁方块”(Latin Square)的游戏,这个游戏是一个n×n的数字方阵,每一行和每一列都是由不重复的n个数字或者字母组成的。
19世纪70年代,美国的一家数学逻辑游戏杂志《戴尔铅笔字谜和词语游戏》(Dell Puzzle Mαgαzines)开始刊登现在称为“数独”的这种游戏,当时人们称之为“数字拼图”(Number Place),在这个时候,9×9的81格数字游戏才开始成型。
1984年4月,在日本游戏杂志《字谜通讯Nikoil》(《パズル通信ニコリ》)上出现了“数独”游戏,提出了“独立的数字”的概念,意思就是“这个数字只能出现一次”或者“这个数字必须是惟一的”,并将这个游戏命名为“数独”(sudoku)。
实现方法:
import java.util.Random;
public class ShuDu {
/** 存储数字的数组 */
private static int[][] n = new int[9][9];
/** 生成随机数字的源数组,随机数字从该数组中产生 */
private static int[] num = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
public static int[][] generateShuDu(){
// 生成数字
for (int i = 0; i < 9; i++) {
// 尝试填充的数字次数
int time = 0;
// 填充数字
for (int j = 0; j < 9; j++) {
// 产生数字
n[i][j] = generateNum(time);
// 如果返回值为0,则代表卡住,退回处理
// 退回处理的原则是:如果不是第一列,则先倒退到前一列,否则倒退到前一行的最后一列
if (n[i][j] == 0) {
// 不是第一列,则倒退一列
if (j > 0) {
j -= 2;
continue;
} else {// 是第一列,则倒退到上一行的最后一列
i--;
j = 8;
continue;
}
}
// 填充成功
if (isCorret(i, j)) {
// 初始化time,为下一次填充做准备
time = 0;
} else { // 继续填充
// 次数增加1
time++;
// 继续填充当前格
j--;
}
}
}
return n;
}
/**
* 是否满足行、列和3X3区域不重复的要求
*
* @param row
* 行号
* @param col
* 列号
* @return true代表符合要求
*/
private static boolean isCorret(int row, int col) {
return (checkRow(row) & checkLine(col) & checkNine(row, col));
}
/**
* 检查行是否符合要求
*
* @param row
* 检查的行号
* @return true代表符合要求
*/
private static boolean checkRow(int row) {
for (int j = 0; j < 8; j++) {
if (n[row][j] == 0) {
continue;
}
for (int k = j + 1; k < 9; k++) {
if (n[row][j] == n[row][k]) {
return false;
}
}
}
return true;
}
/**
* 检查列是否符合要求
*
* @param col
* 检查的列号
* @return true代表符合要求
*/
private static boolean checkLine(int col) {
for (int j = 0; j < 8; j++) {
if (n[j][col] == 0) {
continue;
}
for (int k = j + 1; k < 9; k++) {
if (n[j][col] == n[k][col]) {
return false;
}
}
}
return true;
}
/**
* 检查3X3区域是否符合要求
*
* @param row
* 检查的行号
* @param col
* 检查的列号
* @return true代表符合要求
*/
private static boolean checkNine(int row, int col) {
// 获得左上角的坐标
int j = row / 3 * 3;
int k = col / 3 * 3;
// 循环比较
for (int i = 0; i < 8; i++) {
if (n[j + i / 3][k + i % 3] == 0) {
continue;
}
for (int m = i + 1; m < 9; m++) {
if (n[j + i / 3][k + i % 3] == n[j + m / 3][k + m % 3]) {
return false;
}
}
}
return true;
}
/**
* 产生1-9之间的随机数字 规则:生成的随机数字放置在数组8-time下标的位置,随着time的增加,已经尝试过的数字将不会在取到
* 说明:即第一次次是从所有数字中随机,第二次时从前八个数字中随机,依次类推, 这样既保证随机,也不会再重复取已经不符合要求的数字,提高程序的效率
* 这个规则是本算法的核心
*
* @param time
* 填充的次数,0代表第一次填充
* @return
*/
private static Random r=new Random();
private static int generateNum(int time) {
// 第一次尝试时,初始化随机数字源数组
if (time == 0) {
for (int i = 0; i < 9; i++) {
num[i] = i + 1;
}
}
// 第10次填充,表明该位置已经卡住,则返回0,由主程序处理退回
if (time == 9) {
return 0;
}
// 不是第一次填充
// 生成随机数字,该数字是数组的下标,取数组num中该下标对应的数字为随机数字
// int ranNum = (int) (Math.random() * (9 - time));//j2se
int ranNum=r.nextInt(9 - time);//j2me
// 把数字放置在数组倒数第time个位置,
int temp = num[8 - time];
num[8 - time] = num[ranNum];
num[ranNum] = temp;
// 返回数字
return num[8 - time];
}
public static void main(String[] args) {
int[][] shuDu=generateShuDu();
// 输出结果
for (int i = 0; i < 9; i++) {
for (int j = 0; j < 9; j++) {
System.out.print(shuDu[i][j] + " ");
}
System.out.println();
}
}
}