代码详解:
1.数据的读取
#分别为(1459,81)(1460,80)
train_data = pd.read_csv('kaggle_house_train')
test_data = pd.read_csv(('kaggle_house_test'))
2.数据进行合并(将训练集和测试集进行合并)
#进行划分,所有的行加上从第一列到最后倒数第二列。测试集是从第一列到最后一列。合并好的数据没有包含序号,也没有包含价格
#pd.concat默认是按照行进行拼接的
all_features = pd.concat((train_data.iloc[:, 1:-1], test_data.iloc[:, 1:]))
3.对数据进行预处理
将特征中不是object的类型的索引标号全部取出来 最后得到都是一些数字型所表示的特征。
#,index是取出来索引,将不是object的类型的索引取出来。这些将会是一些数字类型的数据。
numeric_features = all_features.dtypes[all_features.dtypes != 'object'].index
all_features[numeric_features] = all_features[numeric_features].apply(
lambda x: (x - x.mean()) / (x.std()))
# 在标准化数据之后,所有均值消失,因此我们可以将缺失值设置为0,在此并没有使用均值进行填充,只是使用了0来进行填充。
all_features[numeric_features] = all_features[numeric_features].fillna(0)
简单的进行数据对比
转换数据类型
#将数据转换为张量tensor。因为是二维数组,所以获取[0]就是得到的数据的所有行。
n_train = train_data.shape[0]
#print(n_train)
#在这里只输出来每一行的数据,通过标准化进行处理后的数据
#print(all_features[:n_train].values)
#print(all_features[:n_train].index)
train_features = torch.tensor(all_features[:n_train].values, dtype=torch.float32)
test_features = torch.tensor(all_features[n_train:].values, dtype=torch.float32)
#reshape的意思是将其变为n行1列的数据,再将其变成tensor张量,labels的意思就是数据的价格,标签,真实值。
train_labels = torch.tensor(train_data.SalePrice.values.reshape(-1, 1), dtype=torch.float32)
#print(train_data.SalePrice.values)
训练
#=============================训练
#定义损失函数
loss = nn.MSELoss()
#得到所有的列的个数
in_features = train_features.shape[1]
#print(in_features)
#列的个数就是神经网络的输入,单层的神经网络。输入是331,输出是1的网络模型
def get_net():
net = nn.Sequential(nn.Linear(in_features,1))
return net
def log_rmse(net, features, labels):
# 为了在取对数时进一步稳定该值,将小于1的值设置为1,jiang将区间缩紧到1-无所谓
clipped_preds = torch.clamp(net(features), 1, float('inf'))
#预测出来的数值:clipped_preds。标签的值:labels
rmse = torch.sqrt(loss(torch.log(clipped_preds),torch.log(labels)))
return rmse.item()
#使用训练函数来进行优化
def train(net, train_features, train_labels, test_features, test_labels,
num_epochs, learning_rate, weight_decay, batch_size):
#这里是记录损失函数的大小的
train_ls, test_ls = [], []
#将总共的数据进行分批处理,对其进行小批量梯度下降处理
train_iter = d2l.load_array((train_features, train_labels), batch_size)#转化为Dataloader的数据类型。
# 这里使用的是Adam优化算法
optimizer = torch.optim.Adam(net.parameters(),
lr = learning_rate,
weight_decay = weight_decay)
#迭代的次数
for epoch in range(num_epochs):
for X, y in train_iter:
optimizer.zero_grad()
l = loss(net(X), y)
l.backward()
optimizer.step()
#记录每一个epoch的损失大小
#训练集的损失和测试集的损失评判标准是不一样的。
train_ls.append(log_rmse(net, train_features, train_labels))
if test_labels is not None:
test_ls.append(log_rmse(net, test_features, test_labels))
return train_ls, test_ls
#==============================K折交叉验证
#k是几折交叉
#i是第几次循环
#X是数据集
#y是标签
#其本质是将一份数据,分为5份,然后将其中的44份作为训练集,另外一份作为测试集来使用。
def get_k_fold_data(k, i, X, y):
#使用断言,如果k不是大于1的话那么就会直接退出这个循环了
assert k > 1
#de得到的是数据的总共数目。将数据平均分为5份。
fold_size = X.shape[0] // k
X_train, y_train = None, None
for j in range(k):
#slice() 函数实现切片对象,主要用在切片操作函数里的参数传递。参数分别为起始位置,结束位置,间距。
'''
j = 0 1 2 3 4
0 - 292
292 - 584
584 - 876
'''
idx = slice(j * fold_size, (j + 1) * fold_size)
X_part, y_part = X[idx, :], y[idx]
if j == i:
X_valid, y_valid = X_part, y_part
elif X_train is None:
X_train, y_train = X_part, y_part
else:
X_train = torch.cat([X_train, X_part], 0)
y_train = torch.cat([y_train, y_part], 0)
return X_train, y_train, X_valid, y_valid
#返回训练后和验证误差的平均值
def k_fold(k, X_train, y_train, num_epochs, learning_rate, weight_decay,
batch_size):
train_l_sum, valid_l_sum = 0, 0
for i in range(k):
#其中data里面,前面两个是训练集的数据信息,后面是测试集的数据信息。
data = get_k_fold_data(k, i, X_train, y_train)
net = get_net()
train_ls, valid_ls = train(net, *data, num_epochs, learning_rate,
weight_decay, batch_size)
train_l_sum += train_ls[-1]#总是与最后一个数字进行相加。
valid_l_sum += valid_ls[-1]
if i == 0:
d2l.plot(list(range(1, num_epochs + 1)), [train_ls, valid_ls],
xlabel='epoch', ylabel='rmse', xlim=[1, num_epochs],
legend=['train', 'valid'], yscale='log')
#plt.show()
print(f'折{i + 1},训练log rmse{float(train_ls[-1]):f}, '
f'验证log rmse{float(valid_ls[-1]):f}')
return train_l_sum / k, valid_l_sum / k
k, num_epochs, lr, weight_decay, batch_size = 5, 100, 5, 0, 64
train_l, valid_l = k_fold(k, train_features, train_labels, num_epochs, lr,
weight_decay, batch_size)
print(f'{k}-折验证: 平均训练log rmse: {float(train_l):f}, '
f'平均验证log rmse: {float(valid_l):f}')
数据下载:
https://download.csdn.net/download/guoguozgw/87413305