CNN for NLP——Convolutional Neural Networks for Sentence Classification

又要开始一段看论文的调研生活了。那我开始翻译整理论文了。 《Convolutional Neural Networks for Sentence Classification》 这是一篇很经典的用卷积神经网络做文本分类的文章。 作者是纽约大学(New York University)的 Yo...

2018-06-14 17:11:05

阅读数 271

评论数 0

测试用例的几种常见设计方法

测试用例常见的设计方法有:等价类划分法、边界值分析法、错误推测法、判定表法、正交实验法。 一、等价类划分法 顾名思义,顾名思义,等价类划分,就是将测试的范围划分成几个互不相交的子集,他们的并集是全集,从每个子集选出若干个有代表性的值作为测试用例。   例如,我们要测试一个用户名是否合法,用户...

2018-06-07 15:54:41

阅读数 5879

评论数 0

机器学习性能评估指标

最近一直在改模型,关注的是 Accuracy、MSE;但是除此之外,还有不少评价指标。。。【笑哭】 分类 回归 分类 True Positive(真正, TP):将正类预测为正类数. True Negative(真负 , TN):将负类预测为负类数. False Positive...

2018-05-22 21:11:50

阅读数 113

评论数 0

LSTM,LSTM 比 RNN 优化了哪些地方?卷积神经网络与循环神经网络的区别

在普通的全连接网络或CNN中,每层神经元的信号只能向上一层传播,样本的处理在各个时刻独立,因此又被称为前向神经网络 (Feed-forward Neural Networks)。而在RNN中,神经元的输出可以在下一个时间戳直接作用到自身,即第i层神经元在m时刻的输入,除了 (i-1) 层神经元在该...

2018-04-12 17:03:10

阅读数 2198

评论数 0

Xgboost与GBDT

· 传统GBDT以CART作为基分类器,xgboost还支持线性分类器 · xgboost工具支持自定义代价函数,只要函数可一阶和二阶求导 · 传统GBDT在优化时只用到一阶导数信息,xgboost则对代价函数进行了二阶泰勒展开,同时用到了一阶和二阶导数。(详解见后面) · xgboost在...

2018-04-03 15:22:25

阅读数 107

评论数 0

L1 L2 正则化

L1 L2 正则化 是什么 ℓ1 -norm和 ℓ2-norm,中文称作 L1正则化 和 L2正则化,或者 L1范数 和 L2范数。 L1正则化和L2正则化可以看做是损失函数的惩罚项。 所谓的 “惩罚” 是指对损失函数中的某些参数做一些限制。 对于线性回归模型,使用L1正则化的模型建叫做L...

2018-04-03 10:22:39

阅读数 265

评论数 0

基因表达式编程——GEP

近年来,一些新的研究方法,如蚁群算法、人工神经网络、细胞自动机、人工免疫算法、进化算法等,它们通过模拟某一自然现象或过程(“拟物”或“仿生”)来求得问题解决的办法,具有高度并行与自组织、自适应和自学习等特征,已经在人工智能、机器学习、数据挖掘等领域中显示出强大的生命力与进一步发展的潜力。 在论文...

2018-03-17 08:44:18

阅读数 3768

评论数 2

深度学习中 的 Attention机制

注意力机制即 Attention mechanism在序列学习任务上具有巨大的提升作用,在编解码器框架内,通过在编码段加入Attention模型,对源数据序列进行数据加权变换,或者在解码端引入Attention 模型,对目标数据进行加权变化,可以有效提高序列对序列的自然方式下的系统表现。 A...

2018-03-13 15:15:13

阅读数 29792

评论数 6

Python编程知识_系列 II ——边写代码边写笔记,备忘!

在 DataFrame 后添加一行并且保存为 csv 文件 s = pd.Series({'acc':"min_loss", 'loss':log.loc[log['loss'].idxmin]['loss'], 'lr':"val_ac...

2018-03-08 19:33:46

阅读数 83

评论数 0

C语言 使用内置快排函数——qsort(),以及结构体两元素的话

【 #很容易忘记怎么写# 系列】 #include<stdlib.h> 是在这个头文件中的函数! #include<stdio.h> #include<stdlib.h&am...

2018-03-06 11:29:48

阅读数 497

评论数 0

两篇论文中的 ConvLSTM 对比

【这篇重点在分析一下改变了的网络模型,其他的写的并不全面】 1、《Deep Learning Approach for Sentiment Analysis of Short Texts》 learning long-term dependencies with gradient desc...

2018-03-05 11:40:10

阅读数 4185

评论数 3

Softmax回归(softmax regression)

http://wiki.jikexueyuan.com/project/tensorflow-zh/tutorials/mnist_beginners.html 我们用 MNIST数据集当例子。 60000行的训练数据集(mnist.train) 10000行的测试数据集(mnist.tes...

2018-01-10 20:42:21

阅读数 323

评论数 0

Time-Series Classification with COTE: The Collective of Transformation-Based Ensembles

1 INTRODUCTION Our second hypothesis was that we can improve TSC performance through ensembling. Although the value of ensembling is well known, ...

2018-01-09 17:05:12

阅读数 178

评论数 0

模型融合与集成

介绍 堆叠(也称为元组合)是用于组合来自多个预测模型的信息以生成新模型的模型组合技术。通常,堆叠模型(也称为二级模型)因为它的平滑性和突出每个基本模型在其中执行得最好的能力,并且抹黑其执行不佳的每个基本模型,所以将优于每个单个模型。因此,当基本模型显著不同时,堆叠是最有效的。关于在实践中怎样的堆...

2018-01-06 16:40:12

阅读数 2739

评论数 0

Keras 深度学习代码笔记——模型保存与加载

你可以使用model.save(filepath)将Keras模型和权重保存在一个HDF5文件中,该文件将包含: 模型的结构,以便重构该模型 模型的权重 训练配置(损失函数,优化器等) 优化器的状态,以便于从上次训练中断的地方开始 使用keras.models.load_model(fil...

2018-01-05 22:15:21

阅读数 1193

评论数 0

自然语言处理中的多模型深度学习

这里先分享两个分享: 一个是用深度学习(CNN RNN Attention)解决大规模文本分类问题 - 综述和实践,另一个是 brightmart 的 text_classification,里面用 Keras 实现了很多文本分类的模型) 以及下面的各种分享: 2017 知乎看山杯从入门到第...

2018-01-03 23:10:34

阅读数 2852

评论数 0

BB_twtr 使用CNNs+LSTMs做SemEval-2017 Task 4

paper: BB_twtr at SemEval-2017 Task 4: Twitter Sentiment Analysis with CNNs and LSTMs

2017-12-29 15:54:39

阅读数 1705

评论数 0

Python编程知识——边写代码边写笔记,备忘!

for中的范围是 [a, b) for i in range(1,10): print(i) 输出: 1 2 3 4 5 6 7 8 9 定义空的数组(numpy中的array; list) X = np.empty(0,dtype=int) X output:arra...

2017-12-27 20:14:51

阅读数 189

评论数 0

Windows下安装 XGBoost (Installing XGBoost For Anaconda on Windows)

Windows下安装 XGBoost Installing XGBoost For Anaconda on Windows

2017-12-12 12:13:39

阅读数 1260

评论数 2

备忘:jupyter notebook 更改默认目录

jupyter notebook 更改默认目录

2017-12-11 00:25:12

阅读数 269

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭