在众多编程语言中,Python 是通用性非常高的语言之一,同时具有简单性和可读性。 Python 因其易于阅读的语法、面向对象的特性、社区支持和大量的库而受到广泛的欢迎。它可用于数据分析、人工智能、Web开发、游戏开发等领域。
然而,与任何编程语言一样,Python 也拥有一定的劣势。其中之一是性能优化。由于其是解释语言的性质,开发人员总是对其速度和性能感到担忧。这正是代码优化发挥作用的地方。
什么是代码优化?
Python 是一种解释性语言,这意味着它的运行速度不如类似C语言这样的编译语言 。但是,我们可以利用某些技术和策略来优化 Python 代码并提高其性能。
本文讲述了如何让 Python 代码运行得更快、更高效的一些原则。
在本文中,我们使用 Python 的 timeit 模块对代码执行的时间测量。
注意:timeit 模块默认运行该函数一百万次。
下面让我们一起来看看这些优化原则吧~
原则一:使用生成器生成列表、字典
在 Python 2.7 和其以上版本中,增加了对列表、字典、集合使用生成器的功能,这些功能使得以更简洁和更有效的方式生成列表、字典和集合。
使用传统的循环方法创建一个函数并生成一个列表:
>>> def do_1():
... list_object = []
... for i in range(100):
... list_object.append(i)
导入 Python 内置timeit 模块来查看此函数运行多