一、为什么需要“瘦身”?
大模型就像一辆豪华跑车:性能强悍,但油耗高、停车难。
-
问题:动辄百亿参数的模型,部署到手机?难!实时响应?卡!
-
目标:保持性能,让模型更小(省内存)、更快(低延迟)、更省电。
二、知识蒸馏:老师教学生
核心思想:让“小学生”模型(Student)模仿“大学教授”模型(Teacher)的智慧。
-
关键技巧:
-
软标签:老师不直接给答案(如“猫”),而是说“80%像猫,15%像豹,5%像狗”——传递知识细节。
-
温度缩放:加热(温度↑)让概率分布更平滑,冷却(温度↓)恢复为硬标签。
-
-
效果:模型体积↓50%,速度↑2倍,精度损失<1%(如DistilBERT)。
-
经典组合:BERT → TinyBERT,GPT → DistilGPT。
三、量化:从“高清”到“压缩包”
核心思想:将模型参数从“高清图”(FP32)压缩为“表情包”(INT8)。
-
两种姿势:
-
训练后量化(PTQ):直接压缩训练好的模型(快,但可能掉精度)。
-
量化感知训练(QAT):训练时模拟量化误差,让模型提前适应(精度更高)。
-
-
效果:模型体积↓75%,推理速度↑3倍(如TensorRT量化ResNet)。
-
硬件福利:GPU/手机芯片对低精度计算有专门加速指令!
四、剪枝:给模型“剪头发”
核心思想:去掉模型中“不重要的头发”(冗余参数),只留关键部分。
-
两种流派:
-
非结构化剪枝:随意剪掉零星权重(压缩率高,但难加速)。
-
结构化剪枝:整块剃除(如删掉某层所有神经元),硬件友好。
-
-
效果:FLOPs↓50%,精度几乎不变(如MobileNet剪枝版)。
-
高阶玩法:迭代式剪枝(剪一点,调一会,再剪一点)。
五、三剑客对比:怎么选?
技术 | 核心目标 | 优点 | 适用场景 |
---|---|---|---|
蒸馏 | 传递知识 | 小模型也能高智商 | 对话、翻译等复杂任务 |
量化 | 降低数值精度 | 体积小、速度快 | 移动端、边缘设备部署 |
剪枝 | 移除冗余参数 | 计算量大幅减少 | 实时系统(如自动驾驶) |
六、组合拳:1+1+1 > 3
-
经典案例:TinyBERT = 蒸馏(知识传递) + 剪枝(移除冗余层) + 量化(INT8压缩)。
-
效果:体积仅为BERT的1/7,速度提升10倍,精度保持90%+!
七、黄金准则
-
先蒸馏保性能,再剪枝减计算,最后量化压体积。
记住:模型优化不是“瘦即是美”,而是“健康且高效”——在速度、体积、精度间找到最佳平衡!
如果你对大模型微调感兴趣,想深入学习,也可以参加我们的课程《大模型微调实战》:http://t.csdnimg.cn/9XqPq
能够让你掌握大模型微调的核心技能,提升在AI领域的竞争力,增强简历的含金量,获得更多职业机会。