九度 oj 题目1104:整除问题

http://ac.jobdu.com/problem.php?pid=1104


参考了:

1.http://blog.csdn.net/jdplus/article/details/19413037

2.http://blog.csdn.net/jaster_wisdom/article/details/52144308


有两种做法:

第一种做法,把n!做素数分解,用cnt1[i]代表n!中含有的primes[i]的因子个数:如果n/primes[i] == x, 那么在n!中就有x个数含有primes[i]为它的因子,但是这x个数中有的数含有多个primes[i]为它的因子,所以还需要不断的做 cnt1[i] += x/primes[i], x= x/primes[i],直到x == 0。

具体对应代码:

			while(t){
				cnt1[i] += t/primes[i];
				t= t/primes[i];
			}

用cnt2[i] 代表a中含有primes[i]的因子个数。


k值为cnt1[i]/cnt2[i]的最大值。

#include <stdio.h>
#include <algorithm>

using namespace std;
int primes[1001];
int primeNum;
bool temp[1001];

void init(){
	for(int i =0; i<=1000;i++){
		temp[i] = true;
	}
	for(int i =2; i<=1000;i++){
		if(!temp[i]) continue;
		for(int j = i*i ;j<=1000;j+=i){
			temp[j] = false;
		}
	}
	primeNum = 0;
	for(int i=2;i<=1000;i++){
		if(temp[i]){
			primes[primeNum++] = i;
		}
	}
}

int main(int argc, char* argv[])
{
	init();
	int cnt1[1001],cnt2[1001];
	int a,n;
	int ans;
	while(scanf("%d %d" ,&n,&a)!=EOF){
		for(int i=0; i<=1000;i++){
			cnt1[i] = cnt2[i] = 0;
		}
		ans = 0x7fffff;
		for(int i=0;i<primeNum;i++){
			int t = n;
			while(t){
				cnt1[i] += t/primes[i];
				t= t/primes[i];
			}

			while(a%primes[i] ==0){
				cnt2[i]++;
				a=a/primes[i];
			}
			if(cnt2[i] == 0) continue;
			if(cnt1[i]/cnt2[i] < ans){
				ans = cnt1[i]/cnt2[i];
			}
		}
		printf("%d\n",ans);
	}
	return 0;
}





第二种做法是:

在算n!的时候同时算出k,因为只要factor %a ==0 那么factor=factor/a, k++; 又因为当factor不可以%a==0 时, factor = ma + x。 其中ma是肯定可以被a整除的,i*ma也会被a整除,所以在继续算factor时ma部分不会影响factor%a=0, 所以可以将这部分舍掉,factor = factor%a。

#include <stdio.h>

int main(){ 
    int n,a,k; 
    long long factor;
    while(scanf("%d %d",&n,&a) !=EOF){ 
        factor = 1; 
        k = 0;
        for (int i = 1; i <=n; ++i) { 
            factor *= i; 
            while(factor%a==0){ 
                k++; 
                factor /= a;
            }  
            //factor = ma + x, ma will not help to increase k
            //delete ma to prevent overflow 
            factor = factor % a;
        } 
        printf("%d\n",k); 
    }  
}  



阅读更多

没有更多推荐了,返回首页