读书笔记PVANET: Deep but Lightweight Neural Networks for Real-time Object Detection

转自:http://www.cnblogs.com/xueyuxiaolang/p/5959442.html


传送门


中心:minimizing the computational cost 

目前通用的检测方法:(类似faster-rcnn)

the common pipeline of “CNN feature extraction + region proposal + RoI classification”

这篇论文在CNN feature extraction上做文章,设计原则是“less channels with more layers”,即更深更窄

adoption of some building blocks including concatenated ReLU, Inception, and HyperNet

trained with the help of batch normalization, residual connections

learning rate scheduling based on plateau detection







评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值