精简统计学-概率计算

概率计算

重要统计量

公 式 1 P ( A ∣ B ) = P ( A ∩ B ) P ( B ) 公式1\qquad P(A|B)= \frac {P(A\cap B)} {P(B)} 1P(AB)=P(B)P(AB)

以上等式可以用维恩图来证明: 在B条件下,A的概率就是A与B的交集除以B的概率
在这里插入图片描述

用概率树表示条件概率

由公式1可以推导出公式2

公 式 2 P ( A ∩ B ) = P ( A ) ∗ P ( B ∣ A ) 公式2\qquad P(A\cap B) = P(A) * P(B|A) 2P(AB)=P(A)P(BA)

在这里插入图片描述

在以上概率数中求P(B)

P ( B ) = P ( A ∩ B ) + P ( A ′ ∩ B ) ( 1 ) 由公式2可得: P ( A ∩ B ) = P ( A ) ∗ P ( B ∣ A )      ( 2 ) P ( A ′ ∩ B ) = P ( A ′ ) ∗ P ( B ∣ A ′ ) ( 3 ) 将(2)、(3)代入(1)中得: 公 式 3 : P ( B ) = P ( A ) ∗ P ( B ∣ A ) + P ( A ′ ) ∗ P ( B ∣ A ′ ) \begin{aligned} P(B) & = P(A \cap B) + P(A' \cap B) \qquad(1)\\ \text {由公式2可得:}\\ P(A \cap B) & = P(A) * P(B|A) \;\;\qquad\qquad (2)\\ P(A' \cap B) & = P(A') * P(B|A') \qquad\qquad(3)\\ \text {将(2)、(3)代入(1)中得:}\\ 公式3: P(B) & = P(A) * P(B|A) + P(A') * P(B|A') \\ \end{aligned} P(B)由公式2可得:P(AB)P(AB)(2)(3)代入(1)中得:3P(B)=P(AB)+P(AB)(1)=P(A)P(BA)(2)=P(A)P(BA)(3)=P(A)P(BA)+P(A)P(BA)
得出全概率公式,如果有两个事件A和B:

公 式 3 P ( B ) = P ( A ) ∗ P ( B ∣ A ) + P ( A ′ ) ∗ P ( B ∣ A ′ ) 公式3\qquad P(B) = P(A) * P(B|A) + P(A') * P(B|A') 3P(B)=P(A)P(BA)+P(A)P(BA)

贝叶斯定理

如果你有n个互斥且穷举的事件:A1至An,而B是另一个事件,则:
公 式 4 P ( A ∣ B ) = P ( A ) ∗ P ( B ∣ A ) P ( A ) ∗ P ( B ∣ A ) + P ( A ′ ) ∗ P ( B ∣ A ′ ) 公式4\qquad P(A|B) = \frac {P(A) * P(B|A)} {P(A) * P(B|A) + P(A') * P(B|A')} 4P(AB)=P(A)P(BA)+P(A)P(BA)P(A)P(BA)
推导:由公式1演变而来,分母就是公式3,分子是公式2

贝叶斯定理有何用?
非常有用。例如,可以用它来过滤电子邮件及检测垃圾邮件,有时还用在医学试验中。(应用在以后的文章中补充)

公式汇总

公 式 1 P ( A ∣ B ) = P ( A ∩ B ) P ( B ) 公 式 2 P ( A ∩ B ) = P ( A ) ∗ P ( B ∣ A ) 公 式 3 P ( B ) = P ( A ) ∗ P ( B ∣ A ) + P ( A ′ ) ∗ P ( B ∣ A ′ ) 贝 叶 斯 定 理 P ( A ∣ B ) = P ( A ) ∗ P ( B ∣ A ) P ( A ) ∗ P ( B ∣ A ) + P ( A ′ ) ∗ P ( B ∣ A ′ ) \begin{aligned} 公式1\qquad & P(A|B) = \frac {P(A\cap B)} {P(B)}\\ \\ 公式2\qquad & P(A\cap B) = P(A) * P(B|A)\\ \\ 公式3\qquad & P(B) = P(A) * P(B|A) + P(A') * P(B|A') \\ \\ 贝叶斯定理\qquad & P(A|B) = \frac {P(A) * P(B|A)} {P(A) * P(B|A) + P(A') * P(B|A')} \end{aligned} 123P(AB)=P(B)P(AB)P(AB)=P(A)P(BA)P(B)=P(A)P(BA)+P(A)P(BA)P(AB)=P(A)P(BA)+P(A)P(BA)P(A)P(BA)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一本郑经

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值