概率计算
重要统计量
公 式 1 P ( A ∣ B ) = P ( A ∩ B ) P ( B ) 公式1\qquad P(A|B)= \frac {P(A\cap B)} {P(B)} 公式1P(A∣B)=P(B)P(A∩B)
以上等式可以用维恩图来证明: 在B条件下,A的概率就是A与B的交集除以B的概率
用概率树表示条件概率
由公式1可以推导出公式2
公 式 2 P ( A ∩ B ) = P ( A ) ∗ P ( B ∣ A ) 公式2\qquad P(A\cap B) = P(A) * P(B|A) 公式2P(A∩B)=P(A)∗P(B∣A)
在以上概率数中求P(B)
P
(
B
)
=
P
(
A
∩
B
)
+
P
(
A
′
∩
B
)
(
1
)
由公式2可得:
P
(
A
∩
B
)
=
P
(
A
)
∗
P
(
B
∣
A
)
(
2
)
P
(
A
′
∩
B
)
=
P
(
A
′
)
∗
P
(
B
∣
A
′
)
(
3
)
将(2)、(3)代入(1)中得:
公
式
3
:
P
(
B
)
=
P
(
A
)
∗
P
(
B
∣
A
)
+
P
(
A
′
)
∗
P
(
B
∣
A
′
)
\begin{aligned} P(B) & = P(A \cap B) + P(A' \cap B) \qquad(1)\\ \text {由公式2可得:}\\ P(A \cap B) & = P(A) * P(B|A) \;\;\qquad\qquad (2)\\ P(A' \cap B) & = P(A') * P(B|A') \qquad\qquad(3)\\ \text {将(2)、(3)代入(1)中得:}\\ 公式3: P(B) & = P(A) * P(B|A) + P(A') * P(B|A') \\ \end{aligned}
P(B)由公式2可得:P(A∩B)P(A′∩B)将(2)、(3)代入(1)中得:公式3:P(B)=P(A∩B)+P(A′∩B)(1)=P(A)∗P(B∣A)(2)=P(A′)∗P(B∣A′)(3)=P(A)∗P(B∣A)+P(A′)∗P(B∣A′)
得出全概率公式,如果有两个事件A和B:
公 式 3 P ( B ) = P ( A ) ∗ P ( B ∣ A ) + P ( A ′ ) ∗ P ( B ∣ A ′ ) 公式3\qquad P(B) = P(A) * P(B|A) + P(A') * P(B|A') 公式3P(B)=P(A)∗P(B∣A)+P(A′)∗P(B∣A′)
贝叶斯定理
如果你有n个互斥且穷举的事件:A1至An,而B是另一个事件,则:
公
式
4
P
(
A
∣
B
)
=
P
(
A
)
∗
P
(
B
∣
A
)
P
(
A
)
∗
P
(
B
∣
A
)
+
P
(
A
′
)
∗
P
(
B
∣
A
′
)
公式4\qquad P(A|B) = \frac {P(A) * P(B|A)} {P(A) * P(B|A) + P(A') * P(B|A')}
公式4P(A∣B)=P(A)∗P(B∣A)+P(A′)∗P(B∣A′)P(A)∗P(B∣A)
推导:由公式1演变而来,分母就是公式3,分子是公式2
贝叶斯定理有何用?
非常有用。例如,可以用它来过滤电子邮件及检测垃圾邮件,有时还用在医学试验中。(应用在以后的文章中补充)
公式汇总
公 式 1 P ( A ∣ B ) = P ( A ∩ B ) P ( B ) 公 式 2 P ( A ∩ B ) = P ( A ) ∗ P ( B ∣ A ) 公 式 3 P ( B ) = P ( A ) ∗ P ( B ∣ A ) + P ( A ′ ) ∗ P ( B ∣ A ′ ) 贝 叶 斯 定 理 P ( A ∣ B ) = P ( A ) ∗ P ( B ∣ A ) P ( A ) ∗ P ( B ∣ A ) + P ( A ′ ) ∗ P ( B ∣ A ′ ) \begin{aligned} 公式1\qquad & P(A|B) = \frac {P(A\cap B)} {P(B)}\\ \\ 公式2\qquad & P(A\cap B) = P(A) * P(B|A)\\ \\ 公式3\qquad & P(B) = P(A) * P(B|A) + P(A') * P(B|A') \\ \\ 贝叶斯定理\qquad & P(A|B) = \frac {P(A) * P(B|A)} {P(A) * P(B|A) + P(A') * P(B|A')} \end{aligned} 公式1公式2公式3贝叶斯定理P(A∣B)=P(B)P(A∩B)P(A∩B)=P(A)∗P(B∣A)P(B)=P(A)∗P(B∣A)+P(A′)∗P(B∣A′)P(A∣B)=P(A)∗P(B∣A)+P(A′)∗P(B∣A′)P(A)∗P(B∣A)