多柱汉诺塔(Matrix上选做题)——递归与动态规划

多柱汉诺塔

分析:
对于三柱汉诺塔问题,我们已经熟知步骤数最优解为 2 i − 1 2^{i}-1 2i1,其中 i 为盘子个数。
对于四柱以上的问题,我们将柱子分为三类,起点柱Start,辅助柱Buf,终点柱End,三柱情况时,我们总想着将前n - 1个盘从Start借助End移动到Buf,然后将第 n 个盘从Start移到End,最后将Buf柱上的n - 1个盘借助Start移到End,这就找到了递推关系:
S t e p s ( n ) = 2 ∗ S t e p s ( n − 1 ) + 1 Steps(n) = 2*Steps(n-1)+1 Steps(n)=2Steps(n1)+1
对于三柱问题,我们将前n-1盘移到Buf是唯一的选择,对于四柱以上的问题,我们可以移前n-1或者前n-2等等,哪个最佳呢?这就需要动态规划了。
思路:
这里提供Frame算法:
由于不知道哪个 r 使得移动前 n - r 个盘是最优解,我们需要算出所有可能性再取最小值。

(1)首先把前 n - r 个盘移从Strat移到Buf上,此时可用柱数为 m ,步骤数是 S t

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CharlesKai

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值