欢迎大家订阅我的专栏:算法题解:C++与Python实现!
本专栏旨在帮助大家从基础到进阶 ,逐步提升编程能力,助力信息学竞赛备战!
专栏特色
1.经典算法练习:根据信息学竞赛大纲,精心挑选经典算法题目,提供清晰的代码实现与详细指导,帮助您夯实算法基础。
2.系统化学习路径:按照算法类别和难度分级,从基础到进阶,循序渐进,帮助您全面提升编程能力与算法思维。
适合人群:
- 准备参加蓝桥杯、GESP、CSP-J、CSP-S等信息学竞赛的学生
- 希望系统学习C++/Python编程的初学者
- 想要提升算法与编程能力的编程爱好者
附上汇总贴:学而思编程2025年CodeStars年度综合评估真题解析 | 汇总
#include <bits/stdc++.h>
using namespace std;
#define int long long // 定义int为long long类型
const int N = 500005; // 定义最大数据范围
// 全局变量:
// n: 初始元素个数
// m: 查询次数
// t: 离散化后的数值范围
// b[N]: 用于离散化的排序数组
// h[N]: 原始高度数组(处理后存储离散化后的值)
// tr[N]: 树状数组
// ans[N]: 存储前缀和结果
int n, m, t, b[N], h[N], tr[N];
int ans[N];
/**
- 计算x的lowbit值(二进制表示中最低位的1所对应的值)
- @param x 输入数值
- @return lowbit值
*/
inline int lowbit(int x)
{
return x & -x;
}
/**
- 向树状数组中添加元素(单点更新)
- @param x 要更新的位置
*/
void add(int x)
{
while (x <= t) // 不超过树状数组范围
{
tr[x]++; // 当前位置计数+1
x += lowbit(x); // 更新到父节点
}
}
/**
- 查询前缀和(1到x的和)
- @param x 查询的结束位置
- @return 前缀和
*/
int query(int x)
{
int s = 0;
while (x)
{
s += tr[x]; // 累加当前节点值
x -= lowbit(x); // 移动到前一个节点
}
return s;
}
signed main()
{
// 输入初始元素个数和查询次数
cin >> n >> m;
// 输入原始高度数据并复制到b数组
for (int i = 1; i <= n; i++)
{
cin >> h[i];
b[i] = h[i];
}
// 对b数组进行排序(用于离散化)
sort(b + 1, b + 1 + n);
// 对b数组去重,并计算离散化后的数值范围
t = unique(b + 1, b + 1 + n) - b - 1;
// 从后往前处理每个元素
for (int i = n; i >= 1; i--)
{
// 将h[i]离散化为其在b数组中的位置
h[i] = lower_bound(b + 1, b + 1 + t, h[i]) - b;
// 将当前值加入树状数组
add(h[i]);
// 统计比当前值小的元素个数,并累加到ans数组
ans[h[i]] += query(h[i] - 1);
}
// 计算ans数组的前缀和
for (int i = 1; i <= t; i++)
{
ans[i] += ans[i - 1];
}
// 处理每个查询
for (int i = 1; i <= m; i++)
{
int x;
cin >> x; // 输入查询值
// 找到x在离散化数组中的位置(第一个大于x的位置-1)
x = upper_bound(b + 1, b + 1 + t, x) - b - 1;
// 输出结果
cout << ans[x] << endl;
}
return 0;
}