算法竞赛备考冲刺必刷题(C++) | AcWing 372 棋盘覆盖

本文分享的必刷题目是从蓝桥云课洛谷AcWing等知名刷题平台精心挑选而来,并结合各平台提供的算法标签和难度等级进行了系统分类。题目涵盖了从基础到进阶的多种算法和数据结构,旨在为不同阶段的编程学习者提供一条清晰、平稳的学习提升路径。

欢迎大家订阅我的专栏:算法题解:C++与Python实现

附上汇总贴:算法竞赛备考冲刺必刷题(C++) | 汇总


【题目来源】

AcWing:372. 棋盘覆盖 - AcWing题库

【题目描述】

给定一个 N N N N N N 列的棋盘,已知某些格子禁止放置。

求最多能往棋盘上放多少块的长度为 2 2 2、宽度为 1 1 1 的骨牌,骨牌的边界与格线重合(骨牌占用两个格子),并且任意两张骨牌都不重叠。

【输入】

第一行包含两个整数 N N N t t t,其中 t t t 为禁止放置的格子的数量。

接下来 t t t 行每行包含两个整数 x x x y y y,表示位于第 x x x 行第 y y y 列的格子禁止放置,行列数从 1 1 1 开始。

【输出】

输出一个整数,表示结果。

【输入样例】

8 0

【输出样例】

32

【算法标签】

《AcWing 372 棋盘覆盖》 #图论# #二分图最大匹配# #匈牙利算法#

【代码详解】

#include <bits/stdc++.h>  // 包含标准库头文件(万能头文件)
using namespace std;      // 使用标准命名空间

const int N = 105;        // 定义常量:棋盘最大尺寸
typedef pair<int, int> PII;  // 定义坐标对类型

PII match[N][N];          // 定义数组:match[i][j]存储偶数格(i,j)的匹配对象
bool g[N][N], st[N][N];   // 定义数组:g[i][j]表示是否为禁放格子,st[i][j]表示是否已访问
int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};  // 方向数组:上、右、下、左
int n, t;                 // 定义变量:棋盘尺寸n,禁放格子数t

/**
 * 匈牙利算法寻找增广路径
 * @param x 当前格子的行坐标
 * @param y 当前格子的列坐标
 * @return 是否找到增广路径
 */
bool dfs(int x, int y)  
{
    // 遍历四个相邻方向
    for (int i = 0; i < 4; i++) 
    {
        int a = x + dx[i], b = y + dy[i];  // 计算相邻格子坐标
        
        // 检查相邻格子是否合法
        if (a < 1 || a > n || b < 1 || b > n) 
            continue;
        
        // 检查相邻格子是否可访问且非禁放
        if (st[a][b] == false && g[a][b] == false) 
        {
            st[a][b] = true;  // 标记为已访问
            PII t = match[a][b];  // 获取当前匹配
            
            // 如果相邻格子未匹配或能找到新的匹配
            if (t.first == -1 || dfs(t.first, t.second) == true) 
            {
                match[a][b] = {x, y};  // 更新匹配关系
                return true;
            }
        }
    }
    return false;
}

int main()
{
    cin >> n >> t;  // 输入棋盘尺寸和禁放格子数
    memset(match, -1, sizeof(match));  // 初始化匹配数组
    
    // 标记禁放格子
    while (t--) 
    {
        int r, c;
        cin >> r >> c;
        g[r][c] = true;
    }
    
    int ans = 0;  // 定义变量:存储最大匹配数
    
    // 遍历棋盘上的每个奇数格子(行列和为奇数)
    for (int i = 1; i <= n; i++) 
    {
        for (int j = 1; j <= n; j++) 
        {
            // 只处理非禁放且行列和为奇数的格子
            if ((i + j) % 2 == 1 && g[i][j] == false) 
            {
                memset(st, 0, sizeof(st));  // 重置访问标记
                if (dfs(i, j) == true) 
                    ans++;  // 找到匹配则计数
            }
        }
    }
    
    cout << ans << endl;  // 输出最大匹配数
    
    return 0;  // 程序正常结束
}

【运行结果】

8 0  
32
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值