本文分享的必刷题目是从蓝桥云课、洛谷、AcWing等知名刷题平台精心挑选而来,并结合各平台提供的算法标签和难度等级进行了系统分类。题目涵盖了从基础到进阶的多种算法和数据结构,旨在为不同阶段的编程学习者提供一条清晰、平稳的学习提升路径。
欢迎大家订阅我的专栏:算法题解:C++与Python实现!
附上汇总贴:算法竞赛备考冲刺必刷题(C++) | 汇总
【题目来源】
AcWing:372. 棋盘覆盖 - AcWing题库
【题目描述】
给定一个 N N N 行 N N N 列的棋盘,已知某些格子禁止放置。
求最多能往棋盘上放多少块的长度为 2 2 2、宽度为 1 1 1 的骨牌,骨牌的边界与格线重合(骨牌占用两个格子),并且任意两张骨牌都不重叠。
【输入】
第一行包含两个整数 N N N 和 t t t,其中 t t t 为禁止放置的格子的数量。
接下来 t t t 行每行包含两个整数 x x x 和 y y y,表示位于第 x x x 行第 y y y 列的格子禁止放置,行列数从 1 1 1 开始。
【输出】
输出一个整数,表示结果。
【输入样例】
8 0
【输出样例】
32
【算法标签】
《AcWing 372 棋盘覆盖》 #图论# #二分图最大匹配# #匈牙利算法#
【代码详解】
#include <bits/stdc++.h> // 包含标准库头文件(万能头文件)
using namespace std; // 使用标准命名空间
const int N = 105; // 定义常量:棋盘最大尺寸
typedef pair<int, int> PII; // 定义坐标对类型
PII match[N][N]; // 定义数组:match[i][j]存储偶数格(i,j)的匹配对象
bool g[N][N], st[N][N]; // 定义数组:g[i][j]表示是否为禁放格子,st[i][j]表示是否已访问
int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1}; // 方向数组:上、右、下、左
int n, t; // 定义变量:棋盘尺寸n,禁放格子数t
/**
* 匈牙利算法寻找增广路径
* @param x 当前格子的行坐标
* @param y 当前格子的列坐标
* @return 是否找到增广路径
*/
bool dfs(int x, int y)
{
// 遍历四个相邻方向
for (int i = 0; i < 4; i++)
{
int a = x + dx[i], b = y + dy[i]; // 计算相邻格子坐标
// 检查相邻格子是否合法
if (a < 1 || a > n || b < 1 || b > n)
continue;
// 检查相邻格子是否可访问且非禁放
if (st[a][b] == false && g[a][b] == false)
{
st[a][b] = true; // 标记为已访问
PII t = match[a][b]; // 获取当前匹配
// 如果相邻格子未匹配或能找到新的匹配
if (t.first == -1 || dfs(t.first, t.second) == true)
{
match[a][b] = {x, y}; // 更新匹配关系
return true;
}
}
}
return false;
}
int main()
{
cin >> n >> t; // 输入棋盘尺寸和禁放格子数
memset(match, -1, sizeof(match)); // 初始化匹配数组
// 标记禁放格子
while (t--)
{
int r, c;
cin >> r >> c;
g[r][c] = true;
}
int ans = 0; // 定义变量:存储最大匹配数
// 遍历棋盘上的每个奇数格子(行列和为奇数)
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= n; j++)
{
// 只处理非禁放且行列和为奇数的格子
if ((i + j) % 2 == 1 && g[i][j] == false)
{
memset(st, 0, sizeof(st)); // 重置访问标记
if (dfs(i, j) == true)
ans++; // 找到匹配则计数
}
}
}
cout << ans << endl; // 输出最大匹配数
return 0; // 程序正常结束
}
【运行结果】
8 0
32